Authors analyzed articles that opioids may aggravate ischemic and reperfusion damages of the heart but the opioid receptor antagonists may prevent these damages. Authors concluded the it is existed opioid receptor pool an activation of its decreases cardiac tolerance to an impact of ischemia-reperfusion.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aggravate ischemic
8
ischemic reperfusion
8
reperfusion damages
8
opioid receptor
8
[agonists opioid
4
opioid receptors
4
receptors aggravate
4
damages heart]
4
heart] authors
4
authors analyzed
4

Similar Publications

A New target of ischemic ventricular arrhythmias-ITFG2.

Eur J Pharmacol

January 2025

Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China. Electronic address:

ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported.

View Article and Find Full Text PDF

TNFSF9 Silence Impedes Cerebral Ischemia-Reperfusion Injury via Modulating SLC3A2 Expression in Brain Microvascular Endothelial Cells.

J Mol Neurosci

January 2025

Department of Special Examination, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305 Tianmushan Road, Hangzhou City, 310013, Zhejiang, China.

Cerebral ischemia-reperfusion injury (CIRI), which stays unresolved in the clinic, occurs after recanalization of blood vessels serving brain tissues in acute ischemic stroke patients and can result in massive brain cell death, and cell ferroptosis contributes greatly to this process. Our research firstly found that TNFSF9 expression harbored diagnostic value on CIRI patients and intended to further investigate its regulatory mechanism in CIRI, which might facilitate its diagnostic and therapeutic application in the clinic. The level of TNSF9 mRNA was augmented in the plasma of CIR patients, and its silence impeded ferroptosis, apoptosis, and release of inflammatory mediators of BMECs with OGD/R treatment.

View Article and Find Full Text PDF

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

NEDD4-Mediated GSNOR Degradation Aggravates Cardiac Hypertrophy and Dysfunction.

Circ Res

January 2025

Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).

Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!