Sepsis impairs the autoregulation of myocardial microcirculatory blood flow, but whether this impairment is correlated with myocardial remodeling is unknown. This study investigated the role of coronary driving pressure (CDP) as a determinant of microcirculatory blood flow and myocardial fibrosis in endotoxemia and sepsis. The study is composed of two parts: a prospective experimental study and an observational clinical study. The experimental study was performed on male Wistar rats weighing 300 to 320 g. Endotoxemia was induced in rats by lipopolysaccharide (LPS) injection (10 mg·kg intraperitoneally). Hemodynamic evaluation was performed 1.5 to 24 h after LPS injection by measuring the mean arterial pressure, CDP, left ventricular end-diastolic pressure, dP/dtmax, and dP/dtmin. Microspheres were also infused into the left ventricle to measure myocardial blood flow, and myocardial tissue was histologically assessed to analyze collagen deposition. The CDP, mean arterial pressure, and myocardial blood flow were reduced by 55%, 30%, and 70%, respectively, in rats 1.5 h after LPS injection compared with phosphate buffer saline injection (P < 0.05). The CDP was significantly correlated with subendocardial blood flow (r = 0.73) and fibrosis (r = 0.8). Left ventricular function was significantly impaired in the LPS-treated rats, as demonstrated by dP/dtmax (6,155 ± 455 vs. 3,746 ± 406 mmHg·s, baseline vs. LPS; P < 0.05) and dP/dtmin (-5,858 ± 236 vs. -3,516 ± 436 mmHg·s, baseline vs. LPS; P < 0.05). The clinical study was performed on 28 patients with septic shock analyzed for CDP. The CDP data and histological slices were collected from septic patients. In addition, the clinical data demonstrated fibrosis and 45% CDP reduction in nonsurvivors compared with survivors. In conclusion, the left ventricular subendocardial blood flow was positively correlated with CDP, and higher CDP was negatively correlated with myocardial collagen deposition. Thus, early reductions in myocardial blood flow and CDP facilitate late myocardial fibrosis in rats and likely in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000000232DOI Listing

Publication Analysis

Top Keywords

blood flow
28
collagen deposition
12
lps injection
12
left ventricular
12
myocardial blood
12
cdp
10
myocardial
9
coronary driving
8
driving pressure
8
microcirculatory blood
8

Similar Publications

Background: Carotid webs are rare nonatherosclerotic disorders in the carotid artery and are increasingly recognized as factors of ischemic stroke in the young population. Asymptomatic webs can be treated with antithrombotic therapy, whereas symptomatic cases frequently require surgical interventions, including carotid endarterectomy (CEA). However, guidelines for the optimal timing of these treatments remain unestablished, especially compared to atherosclerotic stenotic lesions, due to the rarity of carotid webs.

View Article and Find Full Text PDF

Background: Timing of treatment of aortic stenosis (AS) is of key importance. AS severity is currently determined by transthoracic echocardiography (TTE) with a main focus on mean trans-aortic gradients. However, echocardiography has its limitations.

View Article and Find Full Text PDF

Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification.

View Article and Find Full Text PDF

Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4 T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis.

View Article and Find Full Text PDF

The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!