Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process.

PLoS Biol

The Howard Hughes Medical Institute, and The Jackson Laboratory, Bar Harbor, Maine, United States of America; Department of Ophthalmology and Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America.

Published: July 2014

Schlemm's canal (SC) plays central roles in ocular physiology. These roles depend on the molecular phenotypes of SC endothelial cells (SECs). Both the specific phenotype of SECs and development of SC remain poorly defined. To allow a modern and extensive analysis of SC and its origins, we developed a new whole-mount procedure to visualize its development in the context of surrounding tissues. We then applied genetic lineage tracing, specific-fluorescent reporter genes, immunofluorescence, high-resolution confocal microscopy, and three-dimensional (3D) rendering to study SC. Using these techniques, we show that SECs have a unique phenotype that is a blend of both blood and lymphatic endothelial cell phenotypes. By analyzing whole mounts of postnatal mouse eyes progressively to adulthood, we show that SC develops from blood vessels through a newly discovered process that we name "canalogenesis." Functional inhibition of KDR (VEGFR2), a critical receptor in initiating angiogenesis, shows that this receptor is required during canalogenesis. Unlike angiogenesis and similar to stages of vasculogenesis, during canalogenesis tip cells divide and form branched chains prior to vessel formation. Differing from both angiogenesis and vasculogenesis, during canalogenesis SECs express Prox1, a master regulator of lymphangiogenesis and lymphatic phenotypes. Thus, SC development resembles a blend of vascular developmental programs. These advances define SC as a unique vessel with a combination of blood vascular and lymphatic phenotypes. They are important for dissecting its functions that are essential for ocular health and normal vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106723PMC
http://dx.doi.org/10.1371/journal.pbio.1001912DOI Listing

Publication Analysis

Top Keywords

lymphatic phenotypes
12
schlemm's canal
8
unique vessel
8
vessel combination
8
combination blood
8
blood vascular
8
vascular lymphatic
8
vasculogenesis canalogenesis
8
phenotypes
5
canal unique
4

Similar Publications

Background: Angioimmunoblastic T-cell lymphoma (AITL) is a distinct subtype of peripheral T-cell lymphoma (PTCL) and accounts for 2% of all non-Hodgkin lymphomas. Its typical characteristics include an aggressive course, progressive lymphadenopathy, hepatosplenomegaly, systemic symptoms, anemia, hypergammaglobulinemia, and generally poor prognosis.

Methods: We describe a rare case in which the left inguinal lymph node was completely excised and biopsied one year ago.

View Article and Find Full Text PDF

Genome-wide association study unravels mechanisms of brain glymphatic activity.

Nat Commun

January 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.

Brain glymphatic activity, as indicated by diffusion-tensor imaging analysis along the perivascular space (ALPS) index, is involved in developmental neuropsychiatric and neurodegenerative diseases, but its genetic architecture is poorly understood. Here, we identified 17 unique genome-wide significant loci and 161 candidate genes linked to the ALPS-indexes in a discovery sample of 31,021 individuals from the UK Biobank. Seven loci were replicated in two independent datasets.

View Article and Find Full Text PDF

The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.

View Article and Find Full Text PDF

Macrophage Polarisation During Leishmania (Viannia) braziliensis Infection in Mice.

Parasite Immunol

January 2025

Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil.

Leishmania (Viannia) braziliensis causes cutaneous and mucocutaneous leishmaniasis. Macrophages are host cells for parasite replication and act as effector cells against the parasite. The two main macrophage phenotypes (M1 and M2) and their polarisation states have been implicated in Leishmania infection despite scarce data on L.

View Article and Find Full Text PDF

Sodium nitrite orchestrates macrophage mimicry of tongue squamous carcinoma cells to drive lymphatic metastasis.

Br J Cancer

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China.

Background: Tongue squamous cell carcinoma (TSCC) is a malignant oral cancer with unclear pathogenesis that shows a tendency for early-stage lymphatic metastasis. This results in a poor prognosis, with a low 5-year survival rate. Dietary sodium nitrite (NaNO) has proposed associations with disease, including cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!