Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1.

ACS Chem Biol

Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States.

Published: October 2014

Macrodomains, including the human macrodomain 1 (MacroD1), are erasers of the post-translational modification of monoadenosinediphospho-ribosylation and hydrolytically deacetylate the sirtuin product O-acetyl-ADP-ribose (OAADPr). OAADPr has been reported to play a role in cell signaling based on oocyte microinjection studies, and macrodomains affect an array of cell processes including transcription and response to DNA damage. Here, we investigate human MacroD1 by transition-state (TS) analysis based on kinetic isotope effects (KIEs) from isotopically labeled OAADPr substrates. Competitive radiolabeled-isotope effects and mass spectrometry were used to obtain KIE data to yield intrinsic KIE values. Intrinsic KIEs were matched to a quantum chemical structure of the TS that includes the active site residues Asp184 and Asn174 and a structural water molecule. Transition-state analysis supports a concerted mechanism with an early TS involving simultaneous nucleophilic water attack and leaving group bond cleavage where the breaking C-O ester bond=1.60 Å and the C-O bond to the attacking water nucleophile=2.30 Å. The MacroD1 TS provides mechanistic understanding of the OAADPr esterase chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201351PMC
http://dx.doi.org/10.1021/cb500485wDOI Listing

Publication Analysis

Top Keywords

transition-state analysis
12
human macrodomain
8
analysis 2-o-acetyl-adp-ribose
4
2-o-acetyl-adp-ribose hydrolysis
4
hydrolysis human
4
macrodomain macrodomains
4
macrodomains including
4
including human
4
macrodomain macrod1
4
macrod1 erasers
4

Similar Publications

The quantum transition state framework was developed to calculate the reaction path-resolved scattering matrix for atom-diatom reactions in hyperspherical (APH) coordinates. This approach allows for simply and directly calculating the reaction path-resolved scattering matrix, especially when the encircling reaction path is negligible. It could be used to determine the reactivities of specific pathways in a chemical reaction, providing insights into phenomena such as geometric phase effects.

View Article and Find Full Text PDF

Dinitrogen Activation: A Novel Approach with P/B Intermolecular FLP.

J Phys Chem A

January 2025

School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.

This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.

View Article and Find Full Text PDF

Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the Φ-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble-the rate-limiting step-for fibril elongation of PI3K-SH3 amyloid fibrils.

View Article and Find Full Text PDF

The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants.

View Article and Find Full Text PDF

The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!