Printed nanocomposites are of significant application potential in numerous technologies, such as touch-sensitive sensors and surfaces. Here, temperature dependent electrical transport measurements were undertaken on a recently developed screen-printed, multicomponent, nanocomposite ink to develop a detailed understanding of the electrical transport mechanisms. A theoretical model combining contributions from linear percolative conduction and nonlinear conduction attributed to field-assisted quantum tunneling successfully describes the temperature dependent conduction observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am502515u | DOI Listing |
Sci Rep
January 2025
Radiological Techniques Department, College of Health and Medical Techniques, AL-Mustaqbal University, Hillah, Babil, 51001, Iraq.
This paper proposes a hybrid stochastic-robust optimization framework for sizing a photovoltaic/tidal/fuel cell (PV/TDL/FC) system to meet an annual educational building demand based on hydrogen storage via unscented transformation (UT), and information gap decision theory-based risk-averse strategy (IGDT-RA). The hybrid framework integrates the strengths of UT for scenario generation and IGDT-RA (hybrid UT-IGDT-RA) for optimizing the system robustness and maximum uncertainty radius (MRU) of building energy demand and renewable resource generation. The deterministic model focuses on minimizing the cost of energy production over the project's lifespan (CEPLS) and considers a reliability constraint defined as the demand shortage probability (DSHP).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.
This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.
View Article and Find Full Text PDFACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, Fudan University, Shanghai 200433, China.
Vanadium-based oxides have garnered significant attention for aqueous zinc batteries (AZBs), whereas sluggish Zn diffusion and structural collapse remain major challenges in achieving high-performance cathodes. Herein, different structures of iron-vanadium oxides were fabricated by modulating the amount of vanadium content. It is found that the porous Mott-Schottky heterojunction composed of FeVO and FeVO mixed phase was used to construct a self-generated FeVO-5 structure, which could lower the diffusion barrier and improve the electron transport derived from the formed built-in electric field at the interface, showing faster reaction kinetics and improved capacity compared with the singe-phase FeVO-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!