Hippocampal neurons: simulating the spatial structure of a complex maze.

Curr Biol

Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, UK.

Published: July 2014

Hippocampal place neurons not only represent current location, but fire in sequences that appear to simulate past and future spatial trajectories. A recent study has found that the firing sequences match the structure of a complex maze, suggesting that the structure of the environment is encoded by the place system, perhaps to aid navigational planning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2014.06.001DOI Listing

Publication Analysis

Top Keywords

structure complex
8
complex maze
8
hippocampal neurons
4
neurons simulating
4
simulating spatial
4
spatial structure
4
maze hippocampal
4
hippocampal place
4
place neurons
4
neurons represent
4

Similar Publications

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Background: Microsurgery demands an intensive period of skill acquisition due to its inherent complexity. The development and implementation of innovative training methods are essential for enhancing microsurgical outcomes. This study aimed to evaluate the impact of a simulation training program on the clinical results of fingertip replantation surgeries.

View Article and Find Full Text PDF

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography.

3D Print Med

January 2025

Department of Pediatric Cardiology, The Heart Institute, University of Colorado, Children's Hospital Colorado, 13123 E 16th Ave B100, 80045, Aurora, CO, USA.

Background: Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images.

View Article and Find Full Text PDF

The role of canopy family proteins: biological mechanism and disease function.

Mol Biol Rep

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.

Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!