The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of trans-8'-apo-β-carotenal occurring on the picosecond time scale, after excitation in the S2 state. In a (slightly) polar solvent like chloroform, one-dimensional (T1D-IR) and two-dimensional (T2D-IR) transient infrared spectroscopy reveal spectral components with characteristic frequencies and lifetimes that are not observed in nonpolar solvents (cyclohexane). Combining experimental evidence with an analysis of CASPT2//CASSCF ground and excited state minima and energy profiles, complemented with TDDFT calculations in gas phase and in solvent, we propose a photochemical decay mechanism for this system where only the bright single-excited 1Bu(+) and the dark double-excited 2Ag(-) states are involved. Specifically, the initially populated 1Bu(+) relaxes toward 2Ag(-) in 200 fs. In a nonpolar solvent 2Ag(-) decays to the ground state (GS) in 25 ps. In polar solvents, distortions along twisting modes of the chain promote a repopulation of the 1Bu(+) state which then quickly relaxes to the GS (18 ps in chloroform). The 1Bu(+) state has a high electric dipole and is the main contributor to the charge-transfer state involved in the dynamics in polar solvents. The 2Ag(-) → 1Bu(+) population transfer is evidenced by a cross peak on the T2D-IR map revealing that the motions along the same stretching of the conjugated chain on the 2Ag(-) and 1Bu(+) states are coupled.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp505473jDOI Listing

Publication Analysis

Top Keywords

state
8
charge-transfer state
8
carbonyl carotenoids
8
excited state
8
infrared spectroscopy
8
state polar
8
polar solvents
8
1bu+ state
8
1bu+
6
2ag-
5

Similar Publications

Mpox: emergence following smallpox eradication, ongoing outbreaks and strategies for prevention.

Curr Opin Infect Dis

January 2025

Division of Pediatric Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Purpose Of Review: This review focuses on the temporal relationship between the discontinuation of the global smallpox eradication effort with the rise of mpox in Africa and worldwide. It also discusses the global 2022 clade II mpox epidemic and the current 2024 clade I mpox outbreak. Newer findings on viral evolution and pathogenesis, plus current and future strategies for disease prevention, are reviewed.

View Article and Find Full Text PDF

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra.

View Article and Find Full Text PDF

Adapting biological systems for nanoparticle synthesis opens an orthogonal Green direction in nanoscience by reducing the reliance on harsh chemicals and energy-intensive procedures. This study addresses the challenge of efficient catalyst preparation for organic synthesis, focusing on the rapid formation of palladium (Pd) nanoparticles using bacterial cells as a renewable and eco-friendly support. The preparation of catalytically active nanoparticles on the bacterium VKM B-3302 represents a more suitable approach to increase the reaction efficiency due to its resistance to metal salts.

View Article and Find Full Text PDF

Determining the optimal antibiotic duration for skin and soft tissue infections.

Curr Opin Infect Dis

January 2025

Department of Medicine, Clínica Rotger Quironsalud, Palma de Mallorca, Spain.

Purpose Of Review: Optimal duration of therapy in SSTIs - a heterogeneous group of infections - remains unknown. The advances in knowledge of antibiotic duration of treatment in selected SSTIs that can impact clinical practice and published in the last 18 months are reviewed.

Recent Findings: Recent evidence indicates that few patients receive guideline concordant empiric antibiotics and appropriate duration in the United States, although this likely can be extrapolated to other countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!