Gliomas are the most frequent brain tumors. Among them, glioblastomas are malignant and largely resistant to available treatments. Histopathology is the gold standard for classification and grading of brain tumors. However, brain tumor heterogeneity is remarkable and histopathology procedures for glioma classification remain unsatisfactory for predicting disease course as well as response to treatment. Proteins that tightly associate with cancer differentiation and progression, can bear important prognostic information. Here, we describe the identification of protein clusters differentially expressed in high-grade versus low-grade gliomas. Tissue samples from 25 high-grade tumors, 10 low-grade tumors and 5 normal brain cortices were analyzed by 2D-PAGE and proteomic profiling by mass spectrometry. This led to identify 48 differentially expressed protein markers between tumors and normal samples. Protein clustering by multivariate analyses (PCA and PLS-DA) provided discrimination between pathological samples to an unprecedented extent, and revealed a unique network of deranged proteins. We discovered a novel glioblastoma control module centered on four major network hubs: Huntingtin, HNF4α, c-Myc and 14-3-3ζ. Immunohistochemistry, western blotting and unbiased proteome-wide meta-analysis revealed altered expression of this glioblastoma control module in human glioma samples as compared with normal controls. Moreover, the four-hub network was found to cross-talk with both p53 and EGFR pathways. In summary, the findings of this study indicate the existence of a unifying signaling module controlling glioblastoma pathogenesis and malignant progression, and suggest novel targets for development of diagnostic and therapeutic procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106866PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103030PLOS

Publication Analysis

Top Keywords

brain tumors
8
differentially expressed
8
tumors normal
8
glioblastoma control
8
control module
8
tumors
5
unique four-hub
4
protein
4
four-hub protein
4
protein cluster
4

Similar Publications

Triple-drug antibiotic therapy for disseminated nocardial abscess in the mediastinum and brain of an immunocompetent patient: a case report.

BMC Infect Dis

January 2025

Department of Oncology, General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan, 610000, People's Republic of China.

Background: Nocardia are widely present in nature and considered opportunistic pathogens. They can result in hematogenous spread infection through the ruptured skin or respiratory tract when the host's immune system is compromised. Currently, 119 species of Nocardia have been identified, with 54 capable of causing infections in humans.

View Article and Find Full Text PDF

Role of T cell metabolism in brain tumor development: a genetic and metabolic approach.

BMC Neurol

January 2025

Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.

Background: Malignant brain tumors are among the most lethal cancers. Recent studies emphasized the crucial involvement of the immune system, especially T cells, in driving tumor progression and influencing patient outcomes. The emerging field of immunometabolism has shown that metabolic pathways play a pivotal role in regulating immune responses within the tumor microenvironment.

View Article and Find Full Text PDF

Biopsy is considered the gold standard for diagnosing brain tumors, but its invasive nature can pose risks to patients. Additionally, tissue analysis can be cumbersome and inconsistent among observers. This research aims to develop a cost-effective, non-invasive, MRI-based computer-aided diagnosis tool that can reliably, accurately and swiftly identify brain tumor grades.

View Article and Find Full Text PDF

Targeting protein synthesis pathways in MYC-amplified medulloblastoma.

Discov Oncol

January 2025

Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.

MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis.

View Article and Find Full Text PDF

Introduction: Astrocytoma is the most common glioma, accounting for about 65% of glioblastoma. Its malignant transformation is also one of the important causes of patient mortality, making it the most prevalent and difficult to treat in primary brain tumours. However, little is known about the underlying mechanisms of this transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!