The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic403090z | DOI Listing |
Molecules
December 2024
School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
The development of lanthanide-organic frameworks (Ln-MOFs) using for luminescence sensing and selective gas adsorption applications is of great significance from an energy and environmental perspective. This study reports the solvothermal synthesis of a fluorine-functionalized 3D microporous Tb-MOF with a face-centered cubic () topology constructed from hexanuclear clusters (TbO) bridged by fdpdc ligands, formulated as {[Tb(fdpdc)(-OH)(HO)]·4DMF} (), (fdpdc = 3-fluorobiphenyl-4,4'-dicarboxylate). Complex displays a 3D framework with the channel of 7.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry, University of Hyderabad, Hyderabad500046, India.
A Ce(III) phosphinate and a Ce(IV) phosphostibonate have been assembled by the reaction of a phosphinic acid and phosphostibonate with Ce(III) salts. Single crystal X-ray diffraction (SCXRD) studies reveal the formation of a rare triangular Ce(III) oxo-cluster [Ce(PhCHPO)]Cl(CHOH)(HO)] () and a fascinating hexanuclear oxo-cluster containing Ce(IV) ions [Ce (-ClCHSb)(μ-O)(μ-O)(-BuPO)(μ-OCH)] (). The molecular architecture of showcased an interesting correlation with platonic solids, wherein the Ce(IV), Sb(V), and P(V) ions were found to be present in vertices of an octahedron, a tetrahedron, and a cube, respectively.
View Article and Find Full Text PDFInorg Chem
December 2024
School of Sciences, Xi'an Technological University, Xi'an 710021, P. R. China.
Metal-organic frameworks (MOFs) with adjustable structures, diverse chemical functionalities, and excellent CO capture ability have shown important potential application in the photocatalytic reduction of CO to valuable fuel to curb the energy crisis. In this work, a series of new isostructural lanthanide-organic frameworks based on hexanuclear {LnO} clusters, {(DMA) [Ln(μ-OH)(HO)(SBTC)]} (Ln-MOFs, Ln = Eu, Dy, Gd, Tb, Yb; HSBTC = 5,5'-(ethene-1,2-diyl) di-isophthalic acid; DMA = dimethylamine cation) were synthesized by the solvothermal method. Ln-MOFs were metal-organic frameworks formed by {Ln(μ-OH)} clusters and poly(carboxylic acid) ligands HSBTC, which exhibited excellent photocatalytic properties for the reduction of CO to CO.
View Article and Find Full Text PDFChemistry
December 2024
Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, E-28805, Spain.
Literature on Group One organoelement chemistry is dominated by lithium, though sodium and potassium also feature prominently, whereas rubidium and caesium are rarely mentioned. With recent breakthroughs hinting that organoelement compounds of these two heavier metals can perform better than their lighter congeners in particular applications, important advantages could be missed unless complete sets of alkali metals are included in studies. Here, we report the synthesis and characterisation of a complete set of multi-alkali-metallated molecular compounds of the 1,3,5-tris[(4,6-dimethylpyridin-2-yl)aminomethyl]-2,4,6-triethylbenzene framework.
View Article and Find Full Text PDFInorg Chem
December 2024
Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
Incorporation of amino acid capping molecules (alanine (Ala), methionine (Met), phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), and valine (Val)) in their zwitterionic form into archetypal [Zr(μ-O)(μ-OH)] clusters creates supramolecular frameworks in which the assembly of these highly charged discrete units with chloride counterions provides a unique combination of porosity, chirality, and proton conductivity. The supramolecular frameworks assembled from these cluster entities (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!