Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes.

Int J Mol Med

Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.

Published: October 2014

Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through G-protein-coupled receptors to control diverse biological processes. The novel biological activity of S1P in the adipogenesis of 3T3-L1 preadipocytes was identified in the present study. S1P significantly decreased lipid accumulation in maturing preadipocytes in a dose‑dependent manner. In order to understand the anti‑adipogenic effects of S1P, preadipocytes were treated with S1P, and the change in the expression of several adipogenic transcription factors and enzymes was investigated using quantitative RT-PCR. S1P downregulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding proteins and adiponectin, which are markers of adipogenic differentiation. The effects of S1P on the levels of mitogen‑activated protein kinase (MAPK) signals in preadipocytes were also investigated. The activation of JNK and p38 were downregulated by S1P treatment in human preadipocytes. In conclusion, the results of this study suggest that S1P alters fat mass by directly affecting adipogenesis. This is mediated by the downregulation of adipogenic transcription factors and by inactivation of the JNK and p38 MAPK pathways. Thus, selective targeting of the S1P receptors and sphingosine kinases may have clinical applications for the treatment of obesity.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2014.1856DOI Listing

Publication Analysis

Top Keywords

s1p
10
adipogenic differentiation
8
3t3-l1 preadipocytes
8
study s1p
8
effects s1p
8
adipogenic transcription
8
transcription factors
8
jnk p38
8
preadipocytes
6
sphingosine-1-phosphate inhibits
4

Similar Publications

Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge.

View Article and Find Full Text PDF

[Not Available].

Gastroenterol Hepatol

January 2025

Servicio de Aparato Digestivo, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España.

Etrasimod is a synthetic, non-biological, orally administered small molecule sphingosine-1-phosphate receptor (S1PR) modulator. Etrasimod was approved by the Food and Drug Administration in 2023 and by the European Medicine Agency in 2024, constituting a new therapeutic option for the treatment of moderately to severely active ulcerative colitis in patients 16 years of age and older in the European Union. Its efficacy and tolerability have been demonstrated in several clinical trials both as induction and maintenance treatment, as well as in long-term extension studies.

View Article and Find Full Text PDF

Background And Purpose: Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation.

View Article and Find Full Text PDF

Sphingosine-1-Phosphate, a Marker of Endothelial Injury and Disease Severity in Preeclampsia.

Hypertension

January 2025

Division of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Sweden. (C.E., F.P., L.E., S.R.H.).

Background: Preeclampsia is a hypertensive pregnancy disorder marked by endothelial damage. Healthy endothelium is covered by a protective glycocalyx layer, which, when degraded, releases detectable products into the blood. Sphingosine-1-phosphate (S1P) is a cardiovascular biomarker involved in glycocalyx preservation, linked to placentation and preeclampsia development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!