A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A scalable method for biochemical purification of Salmonella flagellin. | LitMetric

A scalable method for biochemical purification of Salmonella flagellin.

Protein Expr Purif

Center for Vaccine Development, University of Maryland Medical School, Baltimore, MD, United States; Department of Medicine, University of Maryland Medical School, Baltimore, MD, United States; Department of Pediatrics, University of Maryland Medical School, Baltimore, MD, United States.

Published: October 2014

Flagellins are the main structural proteins of bacterial flagella and potent stimulators of innate and adaptive immunity in mammals. The flagellins of Salmonella are virulence factors and protective antigens, and form the basis of promising vaccines. Despite broad interest in flagellins as antigens and adjuvants in vaccine formulations, there have been few advances towards the development of scalable and economical purification methods for these proteins. We report here a simple and robust strategy to purify flagellin monomers from the supernatants of liquid growth culture. Phase 1 flagellins from Salmonella enterica serovars Typhimurium (i epitope) and Enteritidis (g,m epitopes) were purified directly from conditioned fermentation growth media using sequential cation- and anion-exchange chromatography coupled with a final tangential flow-filtration step. Conventional porous chromatography resin was markedly less efficient than membrane chromatography for flagellin purification. Recovery after each process step was robust, with endotoxin, nucleic acid and residual host-cell protein effectively removed. The final yield was 200-300 mg/L fermentation culture supernatant, with ∼45-50% overall recovery. A final pH 2 treatment step was instituted to ensure uniformity of flagellin in the monomeric form. Flagellins purified by this method were recognized by monoclonal anti-flagellin antibodies and maintained capacity to activate Toll-like Receptor 5. The process described is simple, readily scalable, uses standard bioprocess methods, and requires only a few steps to obtain highly purified material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175188PMC
http://dx.doi.org/10.1016/j.pep.2014.07.005DOI Listing

Publication Analysis

Top Keywords

flagellins salmonella
8
flagellins
5
scalable method
4
method biochemical
4
biochemical purification
4
purification salmonella
4
flagellin
4
salmonella flagellin
4
flagellin flagellins
4
flagellins main
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!