Photonic antennas amplify and confine optical fields at the nanoscale offering excellent perspectives for nanoimaging and nanospectroscopy. Increased resolution beyond the diffraction limit has been demonstrated using a variety of antenna designs, but multicolor nanoscale imaging is precluded by their resonance behavior. Here we report on the design of a novel hybrid antenna probe based on a monopole nanoantenna engineered on a bowtie nanoaperture. The device combines broadband enhanced emission, extreme field confinement down to few nanometers, and zero-background illumination. We demonstrate simultaneous dual-color single molecule nanoimaging with 20 nm resolution and angstrom localization precision, corresponding to 10(3)-fold improvement compared to diffraction-limited optics. When interacting with individual molecules in the near-field, our innovative design enables the emission of 10(4) photon-counts per molecule in a 20 nm excitation region, allowing direct discrimination of spectrally distinct molecules separated by 2.1 ± 0.4 nm. We foresee that background-free nanolight sources will open new horizons in optical nanoscopy and fluorescence spectroscopy by providing multicolor detection of standard fluorescent molecules fully compatible with live cell research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl502393b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!