Withania ashwagandha, belonging to the family Solanaceae, is an important medicinal herb of India with restricted geographic distribution. It is a rich source of withaferin A (WA) and other bioactive withanolides. In the present study a rapid in vitro mass propagation protocol of W. ashwagandha was developed from nodal explants. Nodal explants were cultured on MS medium supplemented with various concentrations and combinations of plant growth regulators (PGRs). The highest number of regenerated shoots per ex-plant (33 ± 2.7) and highest WA (13.4 ± 1.15 mg/g of DW) production was obtained on MS medium supplemented with 5.0 μM 6-benzyladenine (BA) and 1.0 μM Kinetin (Kn). In vitro raised shoots were further rooted on half-strength MS medium containing 2.0 μM Indole-3-butyric acid (IBA) and analyzed for WA production. The rooted plantlets when transferred to poly bags in the greenhouse showed 90 % survival frequency. Levels of WA were higher in the in vitro and ex vitro derived shoot and root tissues as compared to field grown mother plants. In an attempt to further maximize WA production, shoot cultures were further grown in liquid MS medium supplemented with 5.0 μM 6-benzyladenine (BA) and 1.0 μM Kinetin (Kn). Root cultures were grown on half strength MS liquid medium fortified with 2.0 μM of IBA. WA production in the liquid cultures was significantly higher compared to the static composition of the same media. This protocol, first of its kind in this plant, can be successfully employed for conservation, proliferation and large-scale production of WA. The regenerated plants can also be used in traditional medicine as an alternative to naturally collected plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101142 | PMC |
http://dx.doi.org/10.1007/s12298-014-0243-5 | DOI Listing |
Regen Ther
June 2024
Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden.
Introduction: Before performing cell therapy clinical trials, it is important to understand how cells are influenced by different growth conditions and to find optimal xeno-free medium formulations. In this study we have investigated the properties of adipose tissue-derived stem cells (ASCs) cultured under xeno-free conditions.
Methods: Human lipoaspirate samples were digested to yield the stromal vascular fraction cells which were then seeded in i) Minimum Essential Medium-α (MEM-α) supplemented with 10 % (v/v) fetal bovine serum (FBS), ii) MEM-α supplemented with 2 % (v/v) human platelet lysate (PLT) or iii) PRIME-XV MSC expansion XSFM xeno-free, serum free medium (XV).
FEMS Microbes
December 2024
Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
Bacteriological agar plates are commonly used to carry out experiments for the selective growth of microorganisms and the isolation of single-strain colonies. However, the presence of agar itself may be a confounding factor since it may serve as a source of carbon and energy. Moreover, there have been ongoing constraints on the production and sourcing of agar.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
Background: Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.
View Article and Find Full Text PDFCan J Microbiol
January 2025
University of Manitoba, Department of Microbiology, Winnipeg, Canada;
Acinetobacter baumannii is an opportunistic pathogen that is often studied in commonly used rich media in laboratories worldwide. Due to the metabolic versatility of A. baumannii, it can be cultured in different growth mediums; however, this can lead to genotypic and phenotypic variations.
View Article and Find Full Text PDFTheriogenology
January 2025
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Cryopreservation of rooster semen is a reproductive technology carried out to boost genetic gain and productivity in commercial flocks of chicken. However, semen freezing significantly reduces the quality and fertilizing potential of spermatozoa. This study examined cryoprotective effects of the mitochondria-targeted antioxidant mitoquinol mesylate added to the freezing extender by assessing post-thaw characteristics of rooster sperm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!