MicroRNAs (miRNAs) have been shown to play important roles in carcinogenesis. However, their underlying mechanisms of action in hepatocellular carcinoma (HCC) are poorly understood. Recent evidence suggests that epigenetic silencing of miRNAs through tumor suppression by CpG island hypermethylation may be a common hallmark of human tumors. Here, we demonstrated that miR-941 was significantly down-regulated in HCC tissues and cell lines and was generally hypermethylated in HCC. The overexpression of miR-941 suppressed in vitro cell proliferation, migration, and invasion and inhibited the metastasis of HCC cells in vivo. Furthermore, the histone demethylase KDM6B (lysine (K)-specific demethylase 6B) was identified as a direct target of miR-941 and was negatively regulated by miR-941. The ectopic expression of KDM6B abrogated the phenotypic changes induced by miR-941 in HCC cells. We demonstrated that miR-941 and KDM6B regulated the epithelial-mesenchymal transition process and affected cell migratory/invasive properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148894 | PMC |
http://dx.doi.org/10.1074/jbc.M114.567818 | DOI Listing |
Tissue Eng Part A
December 2024
Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China.
Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects.
View Article and Find Full Text PDFJ Dent Res
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Cementum, a bone-like tissue, is an essential component of periodontium, and periodontitis can lead to degenerative changes in the cementum, eventually resulting in tooth loss. The therapeutic strategy for advanced periodontitis is to achieve periodontal regeneration, of which cementum regeneration is a key criterion. Cementoblasts are responsible for cementogenesis, and their mineralization counts in cementum regeneration.
View Article and Find Full Text PDFNephron
November 2024
Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
Introduction: Sepsis-associated acute kidney injury (SA-AKI) is a common complication of sepsis. miR-340-5p has been identified as an effective biomarker of various human diseases. As the downstream target, the involvement of lysine (K)-specific demethylase 4C (KDM4C) in SA-AKI would help interpret the regulatory mechanism of miR-340-5p.
View Article and Find Full Text PDFCell Prolif
October 2024
Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
How to improve the neurogenic potential of mesenchymal stem cells (MSCs) and develop biological agent based on the underlying epigenetic mechanism remains a challenge. Here, we investigated the effect of histone demethylase Lysine (K)-specific demethylase 2B (KDM2B) on neurogenic differentiation and nerve injury repair by using MSCs from dental apical papilla (SCAP). We found that KDM2B promoted the neurogenic indicators expression and neural spheres formation in SCAP, and modified the Histone H3K4 trimethylation (H3K4me3) methylation on neurogenesis-related genes.
View Article and Find Full Text PDFBlood Sci
October 2024
Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!