The transcriptional cofactor CITED1 inhibits osteoblastic differentiation and blunts the stimulation of osteoblastic differentiation by parathyroid hormone (PTH). In the MC3T3-E1 osteoblastic cell line, we found that CITED1 was located predominantly in the cytoplasm and that hPTH(1-34) increased translocation of CITED1 from the cytoplasm to the nucleus. This response to hPTH(1-34) was not observed when all 9 serine residues within the 63-84 domain of CITED1 were mutated to alanines (CITED1 9S>A) or when a single serine to alanine mutation was made at position 79 (CITED1 S(79)>A). CITED1 containing mutations of these 9 serines to glutamic acid (9S>E) retained the same nuclear translocation response to hPTH(1-34) as the wild type CITED1. ALP activity and formation of mineralized nodules were inhibited in cells transfected with pcDNA3-CFP-CITED1 or with pcDNA3-CFP-CITED1 9S>E with or without hPTH(1-34) treatment (all P<0.05); these changes were not observed using CITED1 9S>A. Cells exposed to intermittent treatment with hPTH(1-34) expressed more ALP2, Runx2 and osteocalcin than vehicle-treated cells. These effects of hPTH(1-34) were inhibited in cells transfected with pcDNA3-CFP-CITED1 or pcDNA3-CFP-CITED1 9S>E, but were slightly enhanced by the alanine mutants. PKC activator (TPA) increased nuclear translocation of CITED1, whereas a PKC inhibitor (Go6983) blunted the effect of hPTH(1-34) on the nuclear translocation of wildtype CITED1 but not of CITED1 S(79)>E. The data indicated that serine phosphorylation at position 79 in the 63-84 domain is associated with PKC activation, and is required for both CITED1 nuclear translocation induced by PTH and the negative effects of CITED1 on osteoblastic differentiation and mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2014.06.015DOI Listing

Publication Analysis

Top Keywords

nuclear translocation
20
cited1
14
63-84 domain
12
osteoblastic differentiation
12
parathyroid hormone
8
serine phosphorylation
8
phosphorylation position
8
position 63-84
8
translocation cited1
8
response hpth1-34
8

Similar Publications

Biomaterial scaffold engineering presents great potential in promoting axonal regrowth after spinal cord injury (SCI), yet persistent challenges remain, including the surrounding host foreign body reaction and improper host-implant integration. Recent advances in mechanobiology spark interest in optimizing the mechanical properties of biomaterial scaffolds to alleviate the foreign body reaction and facilitate seamless integration. The impact of scaffold stiffness on injured spinal cords has not been thoroughly investigated.

View Article and Find Full Text PDF

FLT3 Inhibitors Induce p53 Instability, Driven by STAT5/MDM2/p53 Competitive Interactions in Acute Myeloid Leukemia.

Cancer Lett

January 2025

Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China. Electronic address:

FLT3 mutations are present in one third of patients with Acute myeloid leukemia (AML) and stand as an attractive therapeutic target. Although FLT3 inhibitors demonstrate clinical efficacy, the drug resistance remains challenging attributed to multiple mechanisms. In this study, we found that tyrosine kinase inhibitors (TKIs) targeting FLT3 prompt p53 degradation in AML cells with FLT3-ITD through ubiquitination.

View Article and Find Full Text PDF

ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.

View Article and Find Full Text PDF

Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke.

Chin Med

January 2025

Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.

Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.

View Article and Find Full Text PDF

circTP63-N suppresses the proliferation and metastasis of nasopharyngeal carcinoma via engaging with HSP90AB1 to modulate the YAP1/Hippo signaling pathway.

Sci China Life Sci

December 2024

NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.

Circular RNAs (circRNAs) play pivotal roles in the development and progression of various diseases, including malignant tumors. However, the biological functions and the underlying mechanisms of many circRNAs remain elusive. In this study, we identified a novel circRNA, circTP63-N, generated through the splicing of exons 2-4 of the TP63 gene in nasopharyngeal carcinoma (NPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!