Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psyneuen.2014.06.017 | DOI Listing |
Vascul Pharmacol
January 2025
Department of Internal Medicine, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy. Electronic address:
Long non-coding RNA (lncRNA) may be involved in dysfunction of pulmonary artery endothelial cells (PAEC) and, thus, in pulmonary arterial hypertension (PAH) pathobiology. We screened the RNA expression profile of commercial human PAEC (hPAEC) exposed to increased hydrostatic pressure, and found that the lncRNA Down syndrome critical region 9 (DSCR9) was the most regulated transcript (log2FC 1.89 vs control).
View Article and Find Full Text PDFClin Genet
January 2025
Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
In 2021, the Indian Undiagnosed Diseases Program was initiated for patients without a definite diagnosis despite extensive evaluation in four participating sites. Between February 2021 and March 2023, a total of 88 patients were recruited and underwent deep phenotyping. A uniform methodology for data re-analysis was implemented as the first step prior to conducting additional genomic testing.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion.
View Article and Find Full Text PDFBiomedicines
November 2024
Neurogenetics Unit, Hospital JM Ramos Mejía, Buenos Aires C1221ADC, Argentina.
Rare movement disorders often have a genetic etiology. New technological advances have increased the odds of achieving genetic diagnoses: next-generation sequencing (NGS) (whole-exome sequencing-WES; whole-genome sequencing-WGS) and long-read sequencing (LRS). In 2017, we launched a WES program for patients with rare movement disorders of suspected genetic etiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!