Impurity cyclotron resonance of anomalous Dirac electrons in graphene.

J Phys Condens Matter

Physics Department, Korea University, Seoul 136-713, Korea.

Published: August 2014

We have investigated a new feature of impurity cyclotron resonances common to various localized potentials of graphene. A localized potential can interact with a magnetic field in an unexpected way in graphene. It can lead to formation of anomalous boundstates that have a sharp peak with a width R in the probability density inside the potential and a broad peak of size magnetic length ℓ outside the potential. We investigate optical matrix elements of anomalous states and find that they are unusually small and depend sensitively on the magnetic field. The effect of many-body interactions on their optical conductivity is investigated using a self-consistent time-dependent Hartree-Fock approach. For a completely filled Landau level we find that an excited electron-hole pair, originating from the optical transition between two anomalous impurity states, is nearly uncorrelated with other electron-hole pairs, although it displays substantial exchange self-energy effects. This absence of correlation is a consequence of a small vertex correction in comparison to the difference between renormalized transition energies computed within the one electron-hole pair approximation. However, an excited electron-hole pair originating from the optical transition between a normal and an anomalous impurity state can be substantially correlated with other electron-hole states with a significant optical strength.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/26/32/325302DOI Listing

Publication Analysis

Top Keywords

electron-hole pair
12
impurity cyclotron
8
magnetic field
8
excited electron-hole
8
pair originating
8
originating optical
8
optical transition
8
anomalous impurity
8
anomalous
5
optical
5

Similar Publications

Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.

View Article and Find Full Text PDF

Aquatic biota and human health are seriously threatened by the dramatic rise in antibiotics in environmental matrices. In this regard, the present study aims to improve knowledge of the combined effects of heterojunction design and defect engineering on the photocatalytic degradation of pharmaceuticals in aqueous matrices. Advantageously, the positioning of the valence band (VB) and conduction band (CB) levels of S@g-CN, being higher than those of BiMoO, demonstrates the feasibility of forming a type-II heterojunction between these materials.

View Article and Find Full Text PDF

A Review on Photocatalytic Hydrogen Peroxide Production from Oxygen: Material Design, Mechanisms, and Applications.

ACS Appl Mater Interfaces

December 2024

Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland.

Hydrogen peroxide (HO) finds extensive applications in various industries, particularly in the environmental field. The photocatalytic production of HO through the oxygen reduction reaction (ORR) or the water oxidation reaction (WOR) offers a promising approach. However, several challenges hinder effective on-site production, such as the rapid electron-hole pair recombination, inefficient visible light utilization, and limited selectivity in HO formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!