The ATP-related compounds in whole blood or red blood cells have been used to evaluate the energy status of erythrocytes and the degradation level of the phosphorylated compounds under various conditions, such as chronic renal failure, drug monitoring, cancer, exposure to environmental toxics, and organ preservation. The complete interpretation of the energetic homeostasis of erythrocytes is only performed using the compounds involved in the degradation pathway for adenine nucleotides alongside the uric acid value. For the first time, we report a liquid chromatographic method using a diode array detector that measures all of these compounds in a small human whole blood sample (125 μL) within an acceptable time of 20 min. The stability was evaluated for all of the compounds and ranged from 96.3 to 105.1% versus the day zero values. The measurement had an adequate sensitivity for the ATP-related compounds (detection limits from 0.001 to 0.097 μmol/L and quantification limits from 0.004 to 0.294 μmol/L). This method is particularly useful for measuring inosine monophosphate, inosine, hypoxanthine, and uric acid. Moreover, this assay had acceptable linearity (r > 0.990), precision (coefficients of variation ranged from 0.1 to 2.0%), specificity (similar retention times and spectra in all samples) and recoveries (ranged from 89.2 to 104.9%). The newly developed method is invaluable for assessing the energetic homeostasis of red blood cells under diverse conditions, such as in vitro experiments and clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1620/tjem.233.205DOI Listing

Publication Analysis

Top Keywords

atp-related compounds
12
method measuring
8
red blood
8
blood cells
8
energetic homeostasis
8
uric acid
8
compounds
7
novel method
4
measuring atp-related
4
compounds human
4

Similar Publications

Insight into flavor changes in bighead carp (Aristichthys nobilis) fillets during storage based on enzymatic, microbial, and metabolism analysis.

Food Chem

December 2024

College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.

The flavor alterations in bighead carp subjected to varying storage temperatures and the underlying metabolic mechanism were elucidated. Analysis of volatile flavor compounds, electronic nose, free amino acids, ATP-related compounds, and sensory evaluations uncovered a progressive flavor deterioration during storage, especially at 25 °C. Metabolomics-based flavor relating component profiling analysis showed that free fatty acids formed various fatty aldehydes including (E, E)-2,4-heptadienal and nonanal under lipoxygenase catalysis.

View Article and Find Full Text PDF

This study examined the spoilage potential of specific spoilage organisms on the degradation of adenosine triphosphate (ATP)-related compounds in vacuum-packed refrigerated large yellow croaker. The total viable count (TVC), ATP-related compounds and related enzymes of vacuum-packed refrigerated large yellow croaker inoculated with different bacteria ( and ) were characterized using the spread plate method, high-performance liquid chromatography and assay kits, respectively. Results indicated that the TVC for both control and groups reached spoilage levels at days 9 and 15, respectively.

View Article and Find Full Text PDF

The degradation of ATP-related compounds is an important biochemical process that reflects the freshness of aquatic products after death. There has been considerable interest in investigating the factors affecting the degradation of ATP-related compounds in aquatic products and in developing techniques to detect them. This review provides the latest knowledge on the degradation mechanisms of ATP-related compounds during the storage of aquatic products and discusses the latest advances in ATP-related compound detection techniques.

View Article and Find Full Text PDF

Contribution of mitochondria to postmortem muscle tenderization: a review.

Crit Rev Food Sci Nutr

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China.

Postmortem meat tenderization is a process mediated by a series of biochemical reactions related to muscle cell death. Cell death is considered a sign that muscle has started to transform into meat. Mitochondria play a significant role in regulating and executing cell death, as they are an aggregation point for many cell death signals and are also the primary target organelle damaged by tissue anoxia.

View Article and Find Full Text PDF

Improved production of β-carotene in light-powered Escherichia coli by co-expression of Gloeobacter rhodopsin expression.

Microb Cell Fact

October 2023

Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.

Background: Providing sufficient and usable energy for the cell factory has long been a heated issue in biosynthesis as solar energy has never been rooted out from the strategy for improvement, and turning Escherichia coli (E. coli) into a phototrophic host has multiple captivating qualities for biosynthesis. In this study, β-carotene was a stable compound for production in E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!