High dimensionality and small sample sizes, and their inherent risk of overfitting, pose great challenges for constructing efficient classifiers in microarray data classification. Therefore a feature selection technique should be conducted prior to data classification to enhance prediction performance. In general, filter methods can be considered as principal or auxiliary selection mechanism because of their simplicity, scalability, and low computational complexity. However, a series of trivial examples show that filter methods result in less accurate performance because they ignore the dependencies of features. Although few publications have devoted their attention to reveal the relationship of features by multivariate-based methods, these methods describe relationships among features only by linear methods. While simple linear combination relationship restrict the improvement in performance. In this paper, we used kernel method to discover inherent nonlinear correlations among features as well as between feature and target. Moreover, the number of orthogonal components was determined by kernel Fishers linear discriminant analysis (FLDA) in a self-adaptive manner rather than by manual parameter settings. In order to reveal the effectiveness of our method we performed several experiments and compared the results between our method and other competitive multivariate-based features selectors. In our comparison, we used two classifiers (support vector machine, [Formula: see text]-nearest neighbor) on two group datasets, namely two-class and multi-class datasets. Experimental results demonstrate that the performance of our method is better than others, especially on three hard-classify datasets, namely Wang's Breast Cancer, Gordon's Lung Adenocarcinoma and Pomeroy's Medulloblastoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105478 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102541 | PLOS |
Bioinformatics
January 2025
Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, 37099, Germany.
Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Urological Surgical, JiangNan University Medical Center, Wuxi, China.
Objective: To conduct a meta-analysis assessing the diagnostic performance of the node reporting and data system (Node-RADS) for detecting lymph node (LN) invasion.
Method: We performed a systematic literature search of online scientific publication databases from inception up to July 31, 2024. We used the quality assessment of diagnostic accuracy studies-2 (QUADAS-2) to assess the study quality, and heterogeneity was determined by the Q-test and measured with I statistics.
Eur J Nucl Med Mol Imaging
January 2025
Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.
Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.
Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.
Arch Microbiol
January 2025
College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
Lyophyllum decastes is a type of edible and medicinal mushroom with high nutritional value. However, it can be infected by fungi during the fruiting process, which impairs the development of the industry. In this study, one pathogenic fungus was isolated from the diseased fruiting bodies of L.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
Aim: To construct a predictive model based on the LODDS stage established for patients with late-onset colon adenocarcinoma to enhance survival stratification.
Methods: Late-onset colon adenocarcinoma data were obtained from the public database. After determining the optimal LODDS truncation value for the training set via X-tile software, we created a new staging system by integrating the T stage and M stage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!