Synthesis of fluorinated agonist of sphingosine-1-phosphate receptor 1.

Bioorg Med Chem

Laboratoire de Chimie Moléculaire et Thioorganique, UMR CNRS 6507 & FR3038, ENSICAEN, Normandie Université, Université de Caen Basse-Normandie, 6 Bd du Maréchal Juin, Caen 14050, France. Electronic address:

Published: September 2014

The bioactive metabolite sphingosine-1-phosphate (S1P), a product of sphingosine kinases (SphKs), mediates diverse biological processes such as cell differentiation, proliferation, survival and angiogenesis. A fluorinated analogue of S1P receptor agonist has been synthesized by utilizing a ring opening reaction of oxacycles by a lithiated difluoromethylphosphonate anion as the key reaction. In vitro activity of this S1P analogue is also reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2014.06.038DOI Listing

Publication Analysis

Top Keywords

synthesis fluorinated
4
fluorinated agonist
4
agonist sphingosine-1-phosphate
4
sphingosine-1-phosphate receptor
4
receptor bioactive
4
bioactive metabolite
4
metabolite sphingosine-1-phosphate
4
sphingosine-1-phosphate s1p
4
s1p product
4
product sphingosine
4

Similar Publications

Radiosynthesis of [18F]-flumazenil Using an Isotopic Approach.

Indian J Nucl Med

November 2024

Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India.

Background: Fluorine-18 (F) flumazenil (FMZ) has been synthesized using various precursors, and its role has been explored in imaging Gamma-aminobutyric acid-A receptors.

Aim And Objective: The main objective was to synthesize (F) FMZ using isotopic substitution.

Materials And Methods: Around 18 ± 2 GBq was added to the module, dried, and radiolabeling was standardized with 3.

View Article and Find Full Text PDF

The hydrofluorination of enynoates has been developed for the synthesis of fluorinated dienoates. Using a pyridinium tetrafluoroborate salt that is easily prepared on large scale, this approach enabled the direct conversion of these substrates to fluorinated targets through a vinyl cation mediated process. This approach was applied to a range of aryl-substituted enynoates to deliver the ()-configured products with high levels of stereo- and regioselectivity.

View Article and Find Full Text PDF

Non-fused electron acceptors have obtained increasing curiosity in organic solar cells (OSCs) thanks to simple synthetic route and versatile chemical modification capabilities. However, non-fused acceptors with varying quinoxaline core and as-cast device have rarely been explored, and the molecular structure-photovoltaic performance relationship of such acceptors remains unclear. Herein, two non-fused acceptors L19 and L21 with thienyl substituted non-fluorinated/fluorinated quinoxaline core were developed via five-step synthesis.

View Article and Find Full Text PDF

Advances in pharmacological treatment of Cushings disease.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Endocrinology &Metabolism, West China Hospital, Sichuan University, Chengdu 610041.

Cushing's disease is a rare endocrine disorder characterized by hypercortisolism. Chronic elevated cortisol levels can lead to dysfunction or complications in multiple organs of systems, including cardiovascular, glucose, and bone metabolism, severely impacting patients' quality of life and posing life-threatening risks. Surgery is the first-line treatment for Cushing's disease.

View Article and Find Full Text PDF

Introduction: Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!