A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. | LitMetric

Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury.

PLoS One

Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America; Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America; Center for Neuroscience & Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America.

Published: April 2015

Traumatic brain injury (TBI) is a major public health concern affecting a large number of athletes and military personnel. Individuals suffering from a TBI risk developing anxiety disorders, yet the pathophysiological alterations that result in the development of anxiety disorders have not yet been identified. One region often damaged by a TBI is the basolateral amygdala (BLA); hyperactivity within the BLA is associated with increased expression of anxiety and fear, yet the functional alterations that lead to BLA hyperexcitability after TBI have not been identified. We assessed the functional alterations in inhibitory synaptic transmission in the BLA and one mechanism that modulates excitatory synaptic transmission, the α7 containing nicotinic acetylcholine receptor (α7-nAChR), after mTBI, to shed light on the mechanisms that contribute to increased anxiety-like behaviors. Seven and 30 days after a mild controlled cortical impact (CCI) injury, animals displayed significantly greater anxiety-like behavior. This was associated with a significant loss of GABAergic interneurons and significant reductions in the frequency and amplitude of spontaneous and miniature GABAA-receptor mediated inhibitory postsynaptic currents (IPSCs). Decreases in the mIPSC amplitude were associated with reduced surface expression of α1, β2, and γ2 GABAA receptor subunits. However, significant increases in the surface expression and current mediated by α7-nAChR, were observed, signifying increases in the excitability of principal neurons within the BLA. These results suggest that mTBI causes not only a significant reduction in inhibition in the BLA, but also an increase in neuronal excitability, which may contribute to hyperexcitability and the development of anxiety disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105413PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102627PLOS

Publication Analysis

Top Keywords

anxiety disorders
12
basolateral amygdala
8
anxiety-like behaviors
8
traumatic brain
8
brain injury
8
development anxiety
8
functional alterations
8
synaptic transmission
8
surface expression
8
bla
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!