The gelatinase members of the MMP family have consistently been associated with tumor invasiveness, which make them an attractive target for molecular imaging. We report new activatable proteolytic optical imaging agents that consist of triple-helical peptide (THP) conjugates, with high specificity to the gelatinases, bearing quenched cypate dyes. With quenching efficiencies up to 51%, the amplified fluorescence signal upon cypate3-THP hydrolysis by the gelatinases (kcat/KM values of 6.4×10(3) M(-1) s(-1) to 9.1×10(3) M(-1) s(-1) for MMP-2 and MMP-9, respectively) in mice bearing human fibrosarcoma xenografted tumors was monitored with fluorescence molecular tomography. There was significant fluorescence enhancement within the tumor and this enhancement was reduced by treatment with pan-MMP inhibitor, Ilomastat. These data, combined with the gelatinase substrate specificity observed in vitro, indicated the observed fluorescence at the site of the tumor was due to gelatinase mediated hydrolysis of cypate3-THP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338581 | PMC |
http://dx.doi.org/10.1016/j.bmcl.2014.06.072 | DOI Listing |
ACS Chem Biol
December 2024
Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States.
Noncanonical base pairs play an important role in enabling the structural and functional complexity of RNA. Molecular recognition of such motifs is challenging because of their diversity, significant deviation from the Watson-Crick structures, and dynamic behavior, resulting in alternative conformations of similar stability. Triplex-forming peptide nucleic acids (PNAs) have emerged as excellent ligands for the recognition of Watson-Crick base-paired double helical RNA.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China.
J Biol Chem
December 2024
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; The Materials Research Science & Engineering Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; National Science Foundation Center for Engineering MechanoBiology, Philadelphia, Pennsylvania, USA; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Electronic address:
Type I collagen is the most abundant structural protein in the body and, with other fibrillar collagens, forms the fibrous network of the extracellular matrix. Another group of extracellular matrix polymers, the glycosaminoglycans, and glycosaminoglycan-modified proteoglycans, play important roles in regulating collagen behaviors and contribute to the compositional, structural, and mechanical complexity of the extracellular matrix. While the binding between collagen and small leucine-rich proteoglycans has been studied in detail, the interactions between collagen and the large bottlebrush proteoglycan versican are not well understood.
View Article and Find Full Text PDFChem Sci
September 2024
Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
Chemists are increasingly turning to biology for inspiration to develop novel and superior synthetic materials. Here, we present an innovative peptide design strategy for tubular assembly. In this simple design, a phenylene urea unit is introduced as an aglet at the N-terminus of the peptide.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan; Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!