The gelatinase members of the MMP family have consistently been associated with tumor invasiveness, which make them an attractive target for molecular imaging. We report new activatable proteolytic optical imaging agents that consist of triple-helical peptide (THP) conjugates, with high specificity to the gelatinases, bearing quenched cypate dyes. With quenching efficiencies up to 51%, the amplified fluorescence signal upon cypate3-THP hydrolysis by the gelatinases (kcat/KM values of 6.4×10(3) M(-1) s(-1) to 9.1×10(3) M(-1) s(-1) for MMP-2 and MMP-9, respectively) in mice bearing human fibrosarcoma xenografted tumors was monitored with fluorescence molecular tomography. There was significant fluorescence enhancement within the tumor and this enhancement was reduced by treatment with pan-MMP inhibitor, Ilomastat. These data, combined with the gelatinase substrate specificity observed in vitro, indicated the observed fluorescence at the site of the tumor was due to gelatinase mediated hydrolysis of cypate3-THP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338581PMC
http://dx.doi.org/10.1016/j.bmcl.2014.06.072DOI Listing

Publication Analysis

Top Keywords

triple-helical peptide
8
optical imaging
8
mmp-2 mmp-9
8
m-1 s-1
8
near-infrared triple-helical
4
peptide quenched
4
quenched fluorophores
4
fluorophores optical
4
imaging mmp-2
4
mmp-9 proteolytic
4

Similar Publications

Noncanonical base pairs play an important role in enabling the structural and functional complexity of RNA. Molecular recognition of such motifs is challenging because of their diversity, significant deviation from the Watson-Crick structures, and dynamic behavior, resulting in alternative conformations of similar stability. Triplex-forming peptide nucleic acids (PNAs) have emerged as excellent ligands for the recognition of Watson-Crick base-paired double helical RNA.

View Article and Find Full Text PDF

Diffusion model assisted designing self-assembling collagen mimetic peptides as biocompatible materials.

Brief Bioinform

November 2024

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China.

Article Synopsis
  • The study focuses on improving the self-assembly of collagen mimetic peptides (CMPs) for better mechanical functions, utilizing a diffusion model to explore amino acid sequences from human collagens.
  • Researchers achieved a success rate of 66% in creating CMPs that can self-assemble into triple helices, also devising a model that predicts melting temperatures (Tm) with high accuracy.
  • The results show that CMPs can facilitate hydrogel formation at low concentrations and promote osteoblast differentiation, highlighting the effectiveness of computer-aided design in developing functional CMPs.
View Article and Find Full Text PDF

Versican binds collagen via its G3 domain and regulates the organization and mechanics of collagenous matrices.

J Biol Chem

December 2024

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; The Materials Research Science & Engineering Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; National Science Foundation Center for Engineering MechanoBiology, Philadelphia, Pennsylvania, USA; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Electronic address:

Type I collagen is the most abundant structural protein in the body and, with other fibrillar collagens, forms the fibrous network of the extracellular matrix. Another group of extracellular matrix polymers, the glycosaminoglycans, and glycosaminoglycan-modified proteoglycans, play important roles in regulating collagen behaviors and contribute to the compositional, structural, and mechanical complexity of the extracellular matrix. While the binding between collagen and small leucine-rich proteoglycans has been studied in detail, the interactions between collagen and the large bottlebrush proteoglycan versican are not well understood.

View Article and Find Full Text PDF

Chemists are increasingly turning to biology for inspiration to develop novel and superior synthetic materials. Here, we present an innovative peptide design strategy for tubular assembly. In this simple design, a phenylene urea unit is introduced as an aglet at the N-terminus of the peptide.

View Article and Find Full Text PDF

A yeast two-hybrid system to obtain triple-helical ligands from combinatorial random peptide libraries.

J Biol Chem

November 2024

Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan; Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan. Electronic address:

Article Synopsis
  • Researchers developed a strategy to create and select triple-helical peptides that can interact with specific bioactive proteins, specifically using a yeast-based library.
  • The selection process utilized a two-hybrid system to identify peptides that bind to the pigment epithelium-derived factor (PEDF), which is known for its anti-angiogenic and neurotrophic properties.
  • The study revealed new binding sequences with strong affinities for PEDF, including a variant that differed from previously known collagen motifs, showcasing the potential of the library approach to discover more effective peptides.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!