We analyzed the mantle transcriptome of pearl oyster Pinctada maxima and developed EST-SSR markers using Illumina HiSeq 2000 paired-end sequencing technology. A total of 49,500,748 raw reads were generated. De novo assembly generated 108,704 unigenes with an average length of 407 bp. Sequence similarity search with known proteins or nucleotides revealed that 30,200 (27.78%) and 25,824 (23.76%) consensus sequences were homologous with the sequences in the non-redundant protein and Swiss-Prot databases, respectively, and that 19,701 (18.12%) of these unigenes were possibly involved in approximately 234 known signaling pathways in the Kyoto Encyclopedia of Genes and Genomes database. Ninety one biomineralization-related unigenes were detected. In a cultured stock, 1764 simple sequence repeats were identified and 56 primer pairs were randomly selected and tested. The rate of successful amplification was 68.3%. The developed molecular markers are helpful for further studies on genetic linkage analysis, gene localization, and quantitative trait loci mapping.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09168451.2014.936351DOI Listing

Publication Analysis

Top Keywords

novo assembly
8
simple sequence
8
pearl oyster
8
oyster pinctada
8
pinctada maxima
8
assembly gene
4
gene annotation
4
annotation simple
4
sequence repeat
4
repeat marker
4

Similar Publications

Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.

View Article and Find Full Text PDF

Chromosome-level genome assembly and characterization of Kaixuan 016: A high-oleic peanut variety with improved agronomic traits developed through gamma-radiation-assisted breeding.

Genomics

January 2025

Shennong Laboratory/ Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China. Electronic address:

High-oleic peanuts are increasingly valued in agricultural production and consumer markets. Nevertheless, limited genomic information hinders the integration of genetic analyses and modern breeding strategies. This study details a chromosome-level genome assembly of Kaixuan 016, a high-oleic peanut variety developed through gamma-radiation-assisted breeding, exhibiting enhanced agronomic traits.

View Article and Find Full Text PDF

Lispe represents a species-rich genus within the family Muscidae. The current subdivision of Lispe species into species groups is based mainly on adult morphology and ecology, with the only available phylogenetic study based on three molecular markers. Nonetheless, certain species groups remain unclear and the relationships and composition of these groups are still unresolved.

View Article and Find Full Text PDF

Graph-based pangenome provides insights into the structural variation and genetic basis of metabolic traits in potato.

Mol Plant

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China; Southwest United Graduate School,Kunming 650500, China. Electronic address:

Potato is the world's most important nongrain crop. Here, we report that 29 genomes from Petota and Etuberosum sections were de novo assembled, and that 248 accessions of wild potatoes, landraces and modern cultivars were re-sequenced at > 25× depth to assess genetic diversity within the Petota section. Subsequently, a graph-based pangenome was constructed by using DM8.

View Article and Find Full Text PDF

The order Diptera (true flies) holds promise as a model taxon in evolutionary developmental biology due to the inclusion of the model organism, , and the ability to cost-effectively rear many species in laboratories. One of them, the scuttle fly (Phoridae) has been used in evolutionary developmental biology for 30 years and is an excellent phylogenetic intermediate between fruit flies and mosquitoes but remains underdeveloped in genomic resources. Here, we present a chromosome-level assembly and annotation of and transcriptomes of 9 embryonic and 4 postembryonic stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!