Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The achievement of half-metallicity with ferromagnetic (FM) coupling has become a key technology for the development of one-dimensional (1D) nanoribbons for spintronic applications. Unfortunately, in previous studies, such a half-metallicity always occurs upon certain external constraints. Here we, for the first time, demonstrate, via density functional theory (DFT), that the recent experimentally realized gallium sulfide nanoribbons (GaSNRs) can display an intrinsic half-metallic character with FM coupling, raised from Ga-4s, Ga-4p and S-3p states at the Ga-dominated edge. Furthermore, the novel half-metallic behavior with FM coupling here is rather robust, especially for GaSNRs with large width and thickness, and can be sustained to the room temperature. Thus, our results accidentally disclose a new 1D spin nanomaterial, which allows us to go beyond the current scope limited to the graphene, boron nitride (BN), zinc oxide (ZnO) and molybdenum sulfide (MoS2) nanoribbons, toward more realistic spintronic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105742 | PMC |
http://dx.doi.org/10.1038/srep05773 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!