Validation by steam sterilization of reusable medical devices requires careful attention to many parameters that directly influence whether or not complete sterilization occurs. Complex implant/instrument tray systems have a variety of configurations and components. Geobacillus stearothermophilus biological indicators (BIs) are used in overkill cycles to to simulate worst case conditions and are intended to provide substantial sterilization assurance. Survival of G. stearothermophilus spores was linked to steam access and size of load in the chamber. By a small and reproducible margin, it was determined that placement of the trays in a rigid container into minimally loaded chambers were more difficult to completely sterilize than maximally loaded chambers.

Download full-text PDF

Source
http://dx.doi.org/10.2345/0899-8205-48.4.306DOI Listing

Publication Analysis

Top Keywords

loaded chambers
8
challenges validation
4
validation complex
4
complex nonsterile
4
nonsterile medical
4
medical device
4
device tray
4
tray validation
4
validation steam
4
steam sterilization
4

Similar Publications

Magnetofluidic-Assisted Portable Automated Microfluidic Devices for Protein Detection.

Anal Chem

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.

To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.

View Article and Find Full Text PDF

The goal of this research is to develop and characterize low-cost NHI doped polyvinyl alcohol (PVA)-4-ethyl-4-methylmorpholiniumbromide (ionic liquid) anion exchange membranes (AEM) and its application for membrane cathode assembly. Physical characterization like FTIR, POM, and XRD notified the functional groups, basic structure, and amorphosity of the produced membrane, and it was employed in single-chambered microbial fuel cells (sMFCs) as a separator. The membranes in terms of oxygen diffusion, proton conductivity, and ion exchange capabilities were evaluated.

View Article and Find Full Text PDF

Technical note: A silenced hybrid 3D-printed self-loading pistol of the YEET family.

Forensic Sci Int

January 2025

Ballistics laboratory, National Institute for Criminalistics and Criminology, Vilvoordsesteenweg 98, Brussels 1120, Belgium. Electronic address:

Since the release of the first 3D-printed firearm, "The Liberator," the occurrence of 3D-printed firearms in criminal activities has increased, highlighting the need for forensic research on these weapons. This study presents a technical examination of a 3D-printed firearm received by the National Institute of Criminalistics and Criminology (NICC), focusing on its design, ballistic performance, and its potential for microscopic comparative analysis. The firearm, resembling a 3D-printed pistol Yeet22, is primarily constructed from polymer parts, with the exception of the firing pin, barrel, and various springs and screws.

View Article and Find Full Text PDF

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

In this chapter, we present a detailed protocol for establishing a three-dimensional (3D) multicellular tumor spheroids (MCTSs) model to simulate the tumor microenvironment (ME) associated with metabolic dysfunction-associated steatotic liver disease (MASLD) for the study of hepatocellular carcinoma (HCC) and colorectal cancer (CRC) cell aggressiveness, growth, and metastasis potential. The MASLD microenvironment (MASLD-ME) is recreated by embedding hepatic stellate cells in a collagen I matrix within a Boyden chamber system. The metabolic medium mimics MASLD conditions, enriched with high glucose, fructose, insulin, and fatty acids, to simulate metabolic stresses associated with the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!