Islet transplantation in spontaneously diabetic BB/Wor rats.

Diabetes

Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455.

Published: September 1989

We investigated the effectiveness of islet transplantation as therapy in an animal model of spontaneous type I (insulin-dependent) diabetes mellitus. Grafting MHC-matched and -mismatched islets with the spontaneously diabetic BB rat as a model has been previously reported to result in recurrence of the disease in the grafted tissue. When transplanted with nonimmunogenic islets isolated by nonenzymatic culture, we found that MHC-matched grafts proved to be susceptible to disease recurrence when allowed to remain in situ until ketosis developed in the host. Conversely, the MHC-mismatched grafts did not succumb to the disease process despite the destruction of the beta-cell population of the endogenous pancreas. Four manifestly hyperglycemic BB/Wor rats received sufficient islet mass by allotransplantation to reverse this state. All four animals had ameliorated conditions, and three of the four were restored to a normoglycemic state. Recurrence of diabetes in the BB rat was not observed.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diab.38.9.1148DOI Listing

Publication Analysis

Top Keywords

islet transplantation
8
spontaneously diabetic
8
bb/wor rats
8
transplantation spontaneously
4
diabetic bb/wor
4
rats investigated
4
investigated effectiveness
4
effectiveness islet
4
transplantation therapy
4
therapy animal
4

Similar Publications

Controlled Nutrient Delivery to Pancreatic Islets Using Polydopamine-Coated Mesoporous Silica Nanoparticles.

Nano Lett

January 2025

Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States.

In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.

View Article and Find Full Text PDF

Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.

View Article and Find Full Text PDF

Herein, we characterized the percentage of tacrolimus to the combined sirolimus and tacrolimus trough levels (tacrolimus %) observed during islet transplant-associated immune suppression therapy with post-transplant skin cancer. Although trough levels of tacrolimus and sirolimus were not different ( = 0.79, 0.

View Article and Find Full Text PDF

Type 1 diabetes mellitus is an autoimmune condition characterized by the destruction of pancreatic β-cells, necessitating insulin therapy to prevent life-threatening complications such as diabetic ketoacidosis. Despite advancements in glucose monitoring and pharmacological treatments, managing this disease remains challenging, often leading to long-term complications and psychological burdens, including diabetes distress. Advanced treatment options, such as whole-pancreas transplantation and islet transplantation, aim to restore insulin production and improve glucose control in selected patients with diabetes.

View Article and Find Full Text PDF

Biotechnology Revolution Shaping the Future of Diabetes Management.

Biomolecules

December 2024

Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.

Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!