Here we propose a thermoresponsive polymer PNIPAM modulated fluorescence resonance energy transfer (FRET) system to enhance the temperature sensitivity of upconversion nanophosphors (UCNPs). By utilizing red/near-infrared dual emitting NaLuF4:Mn(2+),Ln(3+) (Ln(3+) = Yb(3+), Er(3+), Tm(3+)) UCNPs as the energy donor and Au nanoparticles as the acceptor, the temperature resolution of the UCNPs is significantly increased from 3.1 °C to 0.9 °C in the physiological temperature range. Conjugating the UCNPs and acceptors into discrete nanocomposites in our samples facilitates reversible regulation of the emission intensity of UCNPs, which thus would extend their application range in biosensing, especially for probing the dynamic changes of local micro-environments in biological tissues. As there are a broad variety of stimuli to which smart polymers can reversibly respond, our experiments are also extendable to various external conditions in local micro-environments, such as pH values, metal ions, glucose, and tissue-specific enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr02497dDOI Listing

Publication Analysis

Top Keywords

fret system
8
temperature sensitivity
8
sensitivity upconversion
8
upconversion nanophosphors
8
local micro-environments
8
ucnps
5
rational design
4
design thermalresponsive-polymer-switchable
4
thermalresponsive-polymer-switchable fret
4
system enhancing
4

Similar Publications

Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors.

View Article and Find Full Text PDF

A medical predicament has led to extensive drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), and the complexity of treatment has increased exponentially with the induction of osteomyelitis. In view of the severe situation and the potential of bacterial antivirulence strategies, this study focused on the key virulence factor caseinolytic protease (ClpP) of S. aureus to identify new strategies against MRSA-induced osteomyelitis.

View Article and Find Full Text PDF

X-ray footprinting mass spectrometry (XFMS) is a structural biology method that uses broadband X-rays for hydroxyl radical labeling to map protein interactions and conformation in solution. However, while XFMS alone provides important structural information on biomolecules, as we move into the era of the interactome, hybrid methods are becoming increasingly necessary to gain a comprehensive understanding of protein complexes and interactions. Toward this end, we report the development of the first synergetic application of inline and real-time fluorescent spectroscopy at the Advanced Light Source's XFMS facility to study local protein interactions and global conformational changes simultaneously.

View Article and Find Full Text PDF

Supervised multi-frame dual-channel denoising enables long-term single-molecule FRET under extremely low photon budget.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.

Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame.

View Article and Find Full Text PDF

Exploring Distinct Second-Order Data Approaches for Thiamine Quantification via Carbon Dot/Silver Nanoparticle FRET Reversion.

Biosensors (Basel)

December 2024

LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.

Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!