The effect of sustained intrastriatal release of dopamine (DA) from polymer matrices on apomorphine-induced turning behavior in a 6-hydroxydopamine (6-OHDA) unilaterally lesioned rat model was analyzed. A biocompatible semipermeable tube was placed in a denervated striatum as a receptacle for DA-releasing polymer rods. In vitro kinetics showed sustained release of DA from a polymeric rod for 15 days. Implantation of a DA-releasing rod within the striatal receptacle significantly decreased apomorphine-induced rotational behaviour in lesioned animals. Upon removal of the DA-releasing system from the receptacle, rotational behaviour increased within 2 weeks and approached preimplant control values 4 weeks later. Acute microdialysis revealed that DA appeared in the extracellular space within 20 min after the implantation of a DA-releasing rod into a denervated striatum. Significant DA amounts were still measurable 7 days postimplantation, indicating sustained DA release from the polymer rod. Dopamine released from a polymer matrix through a semipermeable receptacle alleviates experimental parkinsonism in rats, suggesting that controlled intrastriatal release of DA from a polymer matrix may provide an alternative method for the treatment of Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-4886(89)90126-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!