Stable isotope labeling of peptides by reductive dimethylation (ReDi labeling) is a method to accurately quantify protein expression differences between samples using mass spectrometry. ReDi labeling is performed using either regular (light) or deuterated (heavy) forms of formaldehyde and sodium cyanoborohydride to add two methyl groups to each free amine. Here we demonstrate a robust protocol for ReDi labeling and quantitative comparison of complex protein mixtures. Protein samples for comparison are digested into peptides, labeled to carry either light or heavy methyl tags, mixed, and co-analyzed by LC-MS/MS. Relative protein abundances are quantified by comparing the ion chromatogram peak areas of heavy and light labeled versions of the constituent peptide extracted from the full MS spectra. The method described here includes sample preparation by reversed-phase solid phase extraction, on-column ReDi labeling of peptides, peptide fractionation by basic pH reversed-phase (BPRP) chromatography, and StageTip peptide purification. We discuss advantages and limitations of ReDi labeling with respect to other methods for stable isotope incorporation. We highlight novel applications using ReDi labeling as a fast, inexpensive, and accurate method to compare protein abundances in nearly any type of sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210151PMC
http://dx.doi.org/10.3791/51416DOI Listing

Publication Analysis

Top Keywords

redi labeling
24
stable isotope
12
reductive dimethylation
8
labeling
8
isotope labeling
8
labeling peptides
8
protein abundances
8
redi
6
protein
5
quantitative proteomics
4

Similar Publications

Rapid Proteomics to Prospect and Validate Novel Bacterial Metabolism Induced by Environmental Burden.

Methods Enzymol

August 2017

Proteomics Facility, University of Iowa, Iowa City, IA, United States. Electronic address:

Understanding the pathophysiology of genes and enzymes involved in caffeine metabolism can have extracurricular benefits, such as providing distinct methylxanthines as intermediates for pharmaceutical synthesis, and also improve environmental waste remediation. The strains Pseudomonas putida CBB5 and CES may provide insights into these applications because they may both be induced to degrade caffeine, yet the latter thrives in concentrations >8.0gL; threefold higher than any other bacteria.

View Article and Find Full Text PDF

Understanding the genes and enzymes involved in caffeine metabolism can lead to applications such as production of methylxanthines and environmental waste remediation. Pseudomonas sp. CES may provide insights into these applications, since this bacterium degrades caffeine and thrives in concentrations of caffeine that are three times higher (9.

View Article and Find Full Text PDF

Stable isotope labeling of peptides by reductive dimethylation (ReDi labeling) is a method to accurately quantify protein expression differences between samples using mass spectrometry. ReDi labeling is performed using either regular (light) or deuterated (heavy) forms of formaldehyde and sodium cyanoborohydride to add two methyl groups to each free amine. Here we demonstrate a robust protocol for ReDi labeling and quantitative comparison of complex protein mixtures.

View Article and Find Full Text PDF

The house mouse is characterised by highly variable chromosome number due to the presence of Robertsonian (Rb) chromosomes. During meiosis in Rb heterozygotes, intricated chromosomal figures are produced, and many unsynapsed regions are present during the first prophase, triggering a meiotic silencing of unsynapsed chromatin (MSUC) in a similar mode to the sex chromosome inactivation. The presence of unsynapsed chromosome regions is associated with impaired spermatogenesis.

View Article and Find Full Text PDF

Fermentation of plant biomass by microbes like Clostridium phytofermentans recycles carbon globally and can make biofuels from inedible feedstocks. We analyzed C. phytofermentans fermenting cellulosic substrates by integrating quantitative mass spectrometry of more than 2500 proteins with measurements of growth, enzyme activities, fermentation products, and electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!