Intra-cardiac cell transplantation is a new therapy after myocardial infarction. Its success, however, is impeded by the limited capacity of donor cells to differentiate into functional cardiomyocytes in the heart. A strategy to overcome this problem is the induction of cardiomyogenic function in cells prior to transplantation. Among other approaches, recently, synthetic small molecules were identified, which promote differentiation of stem cells of various origins into cardiac-like cells or cardiomyocytes. The aim of this study was to develop and characterise new promising cardiomyogenic synthetic low-molecular weight compounds. Therefore, the structure of the known cardiomyogenic molecule cardiogenol C was selectively modified, and the effects of the resulting compounds were tested on various cell types. From this study, VUT-MK142 was identified as the most promising candidate with respect to cardiomyogenic activity. Treatment using this novel agent induced the strongest up-regulation of expression of the cardiac marker ANF in both P19 embryonic carcinoma cells and C2C12 skeletal myoblasts. The activity of VUT-MK142 on this marker superseded CgC; moreover, the novel compound significantly up-regulated the expression of other cardiac markers, and promoted the development of beating cardiomyocytes from cardiovascular progenitor cells. We conclude that VUT-MK142 is a potent new cardiomyogenic synthetic agent promoting the differentiation of pre-cardiac mesoderm into cardiomyocytes, which may be useful to differentiate stem cells into cardiomyocytes for cardiac repair. Additionally, an efficient synthesis of VUT-MK142 is reported taking advantage of continuous flow techniques superior to classical batch reactions both in yield and reaction time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101245 | PMC |
http://dx.doi.org/10.1039/C3MD00101F | DOI Listing |
Sci Rep
December 2024
Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFSci Rep
December 2024
School of Business, Shanghai Dianji University, Shanghai, China.
Rural Revitalization (RR) is a key national strategy in China aimed at sustainable rural development and has gained significant attention. Given the unique characteristics of different villages, understanding differentiated paths to achieve RR is essential. This study introduces a new "5I Framework" (INDUS-INHAB-INDOC-INFRA-INCOM) to assess RR's overall development status (ODS) and differentiated paths.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
The senescence of mesenchymal stem cells (MSCs) is closely related to aging and degenerative diseases. Curcumin exhibits antioxidant and anti-inflammatory effects and has been extensively used in anti-cancer and anti-aging applications. Studies have shown that curcumin can promote osteogenic differentiation, autophagy and proliferation of MSCs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Basic Sciences, Araçatuba Dental School, São Paulo State University - UNESP, Araçatuba, 16066-840, Brazil.
Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!