Background: The etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P) is very complex and still not well elucidated. Given the critical role of DNA damage repair in the embryonic development, we decided to test the hypothesis that polymorphisms of selected DNA repair genes might contribute to the risk of NSCL/P in the Polish population.
Methods: Analysis of 36 polymorphisms in 12 DNA damage repair genes (ATM, BLM, BRCA1, BRIP1, E2F1, MLH1, MRE11A, MSH2, MSH6, NBN, RAD50, and RAD51) was conducted using TaqMan assays in a group of 263 NSCL/P patients and matched control group (n = 526).
Results: Statistical analysis of genotyping results revealed that nucleotide variants in the BRIP1 (BACH1) gene were associated with the risk of NSCL/P. Under assumption of a dominant model, the calculated odds ratios (ORs) for BRIP1 rs8075370 and rs9897121 were 1.689 (95% confidence interval [CI], 1.249-2.282; p = 0.0006) and 1.621 (95% CI, 1.200-2.191; p = 0.0016), respectively. These results were statistically significant even after applying multiple testing correction. Additional evidence for a causative role of BRIP1 in NSCL/P etiology was provided by haplotype analysis. Borderline association with a decreased risk of this anomaly was also observed for BLM rs401549 (ORrecessive = 0.406; 95% CI, 0.223-1.739; p = 0.002) and E2F1 rs2071054 (ORdominant = 0.632; 95% CI, 0.469-0.852; p = 0.003).
Conclusion: Our study suggests that polymorphic variants of DNA damage repair genes play a role in the susceptibility to NSCL/P. BRIP1 might be novel candidate gene for this common developmental anomaly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdra.23275 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Case Western Reserve University, Cleveland, OH, USA.
Background: Even when patients carry disease-causing mutations their entire lives, they do not develop Alzheimer's disease (AD) until later in life. The reason for this loss of brain resilience is not known, and two of the greatest risk factors for developing AD are aging and traumatic brain injury (TBI). Unfortunately, there are currently no protective treatments for patients that prevent the development of AD.
View Article and Find Full Text PDFBackground: UFMylation is an understudied ubiquitin-like post-translational modification (PTM). Like ubiquitin, UFM1 is conjugated to substrates via a catalytic cascade involving a UFM1-specific E1 (UBA5), E2 (UFC1), and an E3 ligase complex (UFL1, DDRGK1 and CDK5RAP3). UFMylation is reversible, and this is mediated by UFSP2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: To date, Alzheimer's disease (AD) research has principally focused on neurons. In contrast, recent studies suggest that genetic mechanisms drive microglia towards prolonged inflammation in AD brains, exacerbating neurodegeneration. Indeed, many of the 70 disease-associated loci uncovered with genome-wide association studies (GWAS) reside near genes related to microglial function, such as TREM2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: The oligomers and fibrils of tau are well known as an indicator of Alzheimer's disease (AD). Recently, other protein aggregates have been shown to be potentially involved in the development of the disease. One of these proteins is p53, involved in DNA repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!