The usefulness of atmospheric pressure photoionization (APPI) is difficult to evaluate for unknowns due to the fragmented literature. Specifically, the variation of dopants with a wide set of compounds or the use of APPI in the negative mode have rarely been explored. Thirty compounds were selected that were not suitable for ESI with a wide variety of functional groups and investigated with atmospheric pressure chemical ionization (APCI) and APPI in the positive and negative ion modes. The influence of the mobile phase (eluents containing acetonitrile or methanol) and--for APPI--four different dopants (acetone, chlorobenzene, toluene, and toluene/anisole) were explored. Stepwise variation of the organic mobile phase allowed to elucidate the ionization mechanism. Atmospheric pressure photoionization was especially useful for compounds, where the M(●+) and not the [M + H](+) was formed. The dopants chlorobenzene and anisole promoted the formation of molecular ions M(●+) for about half of the compounds, and its formation was also positively influenced by the use of mobile phases containing methanol. In the negative ion mode, APPI offered no advantage toward APCI. Best results were generally achieved with the dopant chlorobenzene, establishing that this dopant is suitable for a wide set of compounds. For one quarter of the compounds, significantly better results were achieved with mobile phases containing methanol for both APPI and APCI than those with acetonitrile, but only in the positive mode. With either of the methods--APPI or APCI--about 10% of the compounds were not detected. Strategies to get results quickly with difficult unknowns will be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.3401 | DOI Listing |
J Comp Physiol B
January 2025
Departamento de Fisiologia, Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil.
During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Rheumatology, University Clinical Hospital No. 1 Szczecin, Szczecin, Poland.
Skeletal muscle relaxants have their place in everyday use in numerous anesthesiological procedures, such as preparing a patient for surgery, supporting mechanical ventilation, and performing effective intubation. These drugs can be divided, based on their mechanism of action, into depolarizing skeletal relaxants, such as succinylcholine, and non-depolarizing skeletal muscle relaxants. Non-depolarizing agents are further categorized, based on their structure, into steroidal (eg, rocuronium) and benzylisoquinoline (eg, atracurium) compounds.
View Article and Find Full Text PDFAppl Spectrosc
January 2025
Department of Physics & Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA.
Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO atmospheres.
View Article and Find Full Text PDFCureus
December 2024
General Surgery, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Mumbai, IND.
Background Non-healing diabetic foot ulcers (DFUs) are significant risk factors for amputations. Though the available literature suggests that adjuvant hyperbaric oxygen therapy (HBOT) fastens the healing process and reduces the risk of amputations, its overall evidence in the reduction of amputation remains controversial. Thus, the present study aimed to compare the efficacy and safety of adjuvant HBOT and standard wound care (SWC) with SWC alone in patients with DFUs.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning, China.
A cantilever-enhanced fiber-optic photoacoustic (PA) spectrophone is reported for trace gas detection at a low-pressure environment. A cantilever-based fiber-optic Fabry-Perot (F-P) interferometer (FPI) is utilized for simultaneous measurement of air pressure and PA pressure. Since the cantilever resonance frequency follows air pressure linearly, the fundamental frequency intensity modulation (1-IM) technique is applied to scan the frequency response of the solid PA signal from tube wall absorption for tracking the cantilever resonance frequency in real time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!