Nano-scale Pt particles are often reported to be more electrochemically active and stable in a fuel cell if properly displaced on support materials; however, the factors that affect their activity and stability are not well understood. We applied first-principles calculations and experimental measurements to well-defined model systems of N-doped graphene supports (N-GNS) to reveal the fundamental mechanisms that control the catalytic properties and structural integrity of nano-scale Pt particles. DFT calculations predict thermodynamic and electrochemical interactions between N-GNS and Pt nanoparticles in the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). Moreover, the dissolution potentials of the Pt nanoparticles supported on GNS and N-GNS catalysts are calculated under acidic conditions. Our results provide insight into the design of new support materials for enhanced catalytic efficiency and long-term stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201402258 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!