A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bimetallic NiCo functional graphene: an efficient catalyst for hydrogen-storage properties of MgH₂. | LitMetric

Bimetallic NiCo functional graphene: an efficient catalyst for hydrogen-storage properties of MgH₂.

Chem Asian J

Collaborative Innovation Center of Chemistry and Chemical Engineering of Tianjin, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Institute of New Energy Material Chemistry, Tianjin Key Lab on Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 30007 (P.R. China), Fax: (+86) 22-23503639.

Published: September 2014

Bimetallic NiCo functional graphene (NiCo/rGO) was synthesized by a facile one-pot method. During the coreduction process, the as-synthesized ultrafine NiCo nanoparticles (NPs), with a typical size of 4-6 nm, were uniformly anchored onto the surface of reduced graphene oxide (rGO). The NiCo bimetal-supported graphene was found to be more efficient than their single metals. Synergetic catalysis of NiCo NPs and rGO was confirmed, which can significantly improve the hydrogen-storage properties of MgH2. The apparent activation energy (E(a)) of the MgH2-NiCo/rGO sample decreases to 105 kJ mol(-1), which is 40.7% lower than that of pure MgH2. More importantly, the as-prepared MgH2-NiCo/rGO sample can absorb 5.5 and 6.1 wt% hydrogen within 100 and 350 s, respectively, at 300 °C under 0.9 MPa H2 pressure. Further cyclic kinetics investigation indicates that MgH2-NiCo/rGO nanocomposites have excellent cycle stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201402245DOI Listing

Publication Analysis

Top Keywords

bimetallic nico
8
nico functional
8
functional graphene
8
graphene efficient
8
hydrogen-storage properties
8
mgh2-nico/rgo sample
8
graphene
4
efficient catalyst
4
catalyst hydrogen-storage
4
properties mgh₂
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!