Bimetallic NiCo functional graphene (NiCo/rGO) was synthesized by a facile one-pot method. During the coreduction process, the as-synthesized ultrafine NiCo nanoparticles (NPs), with a typical size of 4-6 nm, were uniformly anchored onto the surface of reduced graphene oxide (rGO). The NiCo bimetal-supported graphene was found to be more efficient than their single metals. Synergetic catalysis of NiCo NPs and rGO was confirmed, which can significantly improve the hydrogen-storage properties of MgH2. The apparent activation energy (E(a)) of the MgH2-NiCo/rGO sample decreases to 105 kJ mol(-1), which is 40.7% lower than that of pure MgH2. More importantly, the as-prepared MgH2-NiCo/rGO sample can absorb 5.5 and 6.1 wt% hydrogen within 100 and 350 s, respectively, at 300 °C under 0.9 MPa H2 pressure. Further cyclic kinetics investigation indicates that MgH2-NiCo/rGO nanocomposites have excellent cycle stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201402245 | DOI Listing |
Int J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China. Electronic address:
The conversion of abundant lignin was of great significance for the utilization of biomass resources. In this study, lignin sulfonate (LS) was selected as a carbon-based support, which was successfully introduced into the NiCo-MOF structure. A series of lignin and MOF hybrid catalysts (NiCo-MOF-LS) with varying metal ratios of Ni and Co were synthesized via the hydrothermal method.
View Article and Find Full Text PDFChemphyschem
December 2024
Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand.
To date, preparing materials with highly dispersed metal nanoparticles without metal agglomeration on a solid support is challenging. This work presents an alternative approach for synthesizing NiCo species on hierarchical ZSM-5 materials derived from a ZSM-5@NiCoAl-LDHs composite. The designed material was prepared by the growth of a NiCo-layered double hydroxides (LDHs) precursor on the surface of hierarchical ZSM-5 nanosheets.
View Article and Find Full Text PDFiScience
December 2024
School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
In the present study, bimetallic oxides comprising nickel (Ni) and cobalt (Co) were synthesized using a facile hydrothermal method in the presence of CTAB and L-lysine. Their efficacy in catalyzing hydrogen production under alkaline conditions was assessed. Structural, vibrational, and morphological characteristics were analyzed utilizing X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) techniques.
View Article and Find Full Text PDFSmall Methods
December 2024
Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Nanomaterials (Basel)
November 2024
Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106344, Taiwan.
In this study, bimetallic NiCo nanoparticles (NPs) were encapsulated within the mesopores of carboxylic acid functionalized mesoporous silica (CMS) through the chemical reduction approach. Both NaBH and NHBH were used as reducing agents to reduce the metal ions simultaneously. The resulting composite was used as a catalyst for hydrolysis of ammonia borane (NHBH, AB) to produce H.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!