UV excited-state photoresponse of biochromophore negative ions.

Angew Chem Int Ed Engl

Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark); Chemistry Department, M.V. Lomonosov Moscow State University, 119991 Moscow (Russia).

Published: September 2014

Members of the green fluorescent protein (GFP) family may undergo irreversible phototransformation upon irradiation with UV light. This provides clear evidence for the importance of the higher-energy photophysics of the chromophore, which remains essentially unexplored. By using time-resolved action and photoelectron spectroscopy together with high-level electronic structure theory, we directly probe and identify higher electronically excited singlet states of the isolated para- and meta-chromophore anions of GFP. These molecular resonances are found to serve as a doorway for very efficient electron detachment in the gas phase. Inside the protein, this band is found to be resonant with the quasicontinuum of a solvated electron, thus enhancing electron transfer from the GFP to the solvent. This suggests a photophysical pathway for photoconversion of the protein, where GFP resonant photooxidation in solution triggers radical redox reactions inside these proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201404609DOI Listing

Publication Analysis

Top Keywords

protein gfp
8
excited-state photoresponse
4
photoresponse biochromophore
4
biochromophore negative
4
negative ions
4
ions members
4
members green
4
green fluorescent
4
fluorescent protein
4
gfp
4

Similar Publications

Surpassing protein specificity in biomimetics of bacterial amyloids.

Int J Biol Macromol

January 2025

Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Research Institute Sant Pau (IR Sant Pau), Barcelona, Spain. Electronic address:

In nature, nontoxic protein amyloids serve as dynamic, protein-specific depots, exemplified by both bacterial inclusion bodies and secretory granules from the endocrine system. Inspired by these systems, chemically defined and regulatory-compliant artificial protein microgranules have been developed for clinical applications as endocrine-like protein repositories. This has been achieved by exploiting the reversible coordination between histidine residues and divalent cations such as Zn, that promotes protein-protein interactions.

View Article and Find Full Text PDF

Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression.

Biochem Biophys Res Commun

December 2024

Université Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France. Electronic address:

Nonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.

View Article and Find Full Text PDF

Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.

View Article and Find Full Text PDF

Background: Abnormal protein depositions of amyloid β and tau are present in the nasal cavity in patients with Alzheimer's disease. This finding raises an idea that nasal tissues would be a promising source of diagnostic biomarkers for Alzheimer's disease. However, the amounts of amyloid β and tau are extremely small, making it difficult to quantify the levels using conventional methods such as ELISA, and thus it is challenging to utilize them for the diagnostic biomarkers.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands.

Background: Synaptic dysfunction plays an important role in Alzheimer's disease (AD) and cognitive decline. We investigated the association between cerebrospinal fluid (CSF) synaptic protein levels and quantitative EEG (qEEG) measures, two modalities to measure synaptic dysfunction in AD pathology. We assessed combined and independent prognostic value of both modalities for cognitive decline along the AD continuum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!