The presence of micropores in calcium phosphate (CaP) ceramics has shown its important role in initiating inductive bone formation in ectopic sites. To investigate how microporous CaP ceramics trigger osteoinduction, we optimized two biphasic CaP ceramics (i.e., BCP-R and BCP-S) to have the same chemical composition, equivalent surface area per volume, comparable protein adsorption, similar ion (i.e., calcium and phosphate) exchange and the same surface mineralization potential, but different surface architecture. In particular, BCP-R had a surface roughness (Ra) of 325.4 ± 58.9 nm while for BCP-S it was 231.6 ± 35.7 nm. Ceramic blocks with crossing or noncrossing channels of 250, 500, 1000, and 2000 µm were implanted in paraspinal muscle of dogs for 12 weeks. The percentage of bone volume in the channels was not affected by the type of pores (i.e., crossing vs. closed) or their size, but it was greatly influenced by the ceramic type (i.e., BCP-R vs. BCP-S). Significantly, more bone was formed in the channels of BCP-R than in those of BCP-S. Since the two CaP ceramics differed only in their surface architecture, the results hereby demonstrate that microporous CaP ceramics may induce ectopic osteogenesis through surface architecture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35272 | DOI Listing |
Nanomaterials (Basel)
January 2025
Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), 48018 Faenza, Italy.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highliting the urgent need for new therapeutic strategies. Peptide-based therapies have demonstrated significant potential for treating CVDs; however, their clinical application is hindered by their limited stability in physiological fluids. To overcome this challenge, an effective drug delivery system is essential to protect and efficiently transport peptides to their intended targets.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Design and Automation, Vellore Institute of Technology, School of Mechanical Engineering, Vellore Institute of Technology, Thiruvalluvar Road, Katpadi, Vellore, Tamil Nadu, 632014, INDIA.
Calcium phosphate (CaP)-based bioscaffolds are used for bone tissue regeneration because of their physical and chemical resemblance to human bone. Calcium, phosphate, sodium, potassium, magnesium, and silicon are important components of human bone. The successful biomimicking of human bone characteristics involves incorporating all the human bone elements into the scaffold material.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.
View Article and Find Full Text PDFInt J Implant Dent
December 2024
Department for Prosthetic Dentistry and Materials, University Medical Centre, Augustusplatz 2, 55131, Mainz, Germany.
Purpose: This study assesses the impact of Cold Atmospheric Pressure Plasma (CAP) pretreatment on the bond strength of two-piece hybrid ceramic abutment crowns in implant dentistry. The objective is to ascertain whether CAP can be employed as an alternative or complementary technique to conventional methods.
Methods: 80 titanium bases and 80 VITA ENAMIC polymer-infiltrated ceramic network (PICN) crowns were divided into 8 groups (n = 10) based on different surface pretreatments of the crowns before cementation: no treatment (A), hydrofluoric acid (HF) (B), HF and silane (C), silane (D), CAP (AP), HF and CAP (BP), HF, CAP, and silane (CP), and CAP and silane (DP).
ACS Omega
December 2024
Department of Physical Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 01 Košice, Slovakia.
In the past decades, iron has been one of the intensively studied biodegradable metals due to its suitable mechanical properties, but it suffers from slow degradation in a physiological environment and low bioactivity. In this work, the beneficial properties of ceramic and polymer coatings were merged to enhance the corrosion properties and biological compatibility of Fe-based biomaterials. A new bilayer coating for Fe-based biomaterials that speeds up degradation while offering controlled, localized drug release to prevent infections was prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!