Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the presence of sodium chloride (NaCl), DNA fragments can be size-selectively separated by varying the final concentration of polyethylene glycol (PEG). This separation strategy in combination with the use of paramagnetic particles provides a valuable platform for achieving the desired DNA size interval, which is important in automated library preparation for high-throughput DNA sequencing. Here, we report the establishment of recovery spectra of DNA fragments that enable the determination of suitable NaCl and PEG concentrations for size-selective separation. Firstly, at a given NaCl concentration, the recovery equation was obtained by fitting the DNA recovery ratios versus the PEG concentrations using the logistic function to determine the required parameters. Secondly, the slope function of the recovery equation was achieved by deducing its first derivative. Therefore, the recovery spectrum can be generated using the slope function based on those parameters. According to the recovery spectra of different length DNA fragments, suitable NaCl and PEG concentrations can be determined, respectively, by calculating their resolution values and recovery ratios. The strategy was effectively applied to the size-selective separation of 532-, 400-, and 307-bp fragments at the selected reagent concentrations with recoveries of 96.9, 64.7, and 85.9%, respectively. Our method enables good predictions of NaCl and PEG concentrations for size-selective DNA separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.201400234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!