Lectin LecA is a virulence factor of Pseudomonas aeruginosa involved in lung injury, mortality, and cellular invasion. Ligands competing with human glycoconjugates for LecA binding are thus promising candidates to counteract P. aeruginosa infections. We have identified a novel divalent ligand from a focused galactoside(Gal)-conjugate array which binds to LecA with very high affinity (Kd = 82 nM). Crystal structures of LecA complexed with the ligand together with modeling studies confirmed its ability to chelate two binding sites of LecA. The ligand lowers cellular invasiveness of P. aeruginosa up to 90 % when applied in the range of 0.05-5 μM. Hence, this ligand might lead to the development of drugs against P. aeruginosa infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201402831 | DOI Listing |
J Biol Chem
February 2025
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, Saarbrücken, Germany. Electronic address:
Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new anti-infectives. To find new potential targets for anti-infectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species.
View Article and Find Full Text PDFJACS Au
December 2024
Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.
is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.
View Article and Find Full Text PDFChemistry
January 2025
Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
Pseudomonas aeruginosa is a prevalent opportunistic human pathogen, particularly associated with cystic fibrosis. Among its virulence factors are the LecA and LecB lectins. Both lectins play an important role in the adhesion to the host cells and display cytotoxic activity.
View Article and Find Full Text PDFBeilstein J Org Chem
July 2024
Université Paris-Saclay, ENS Paris-Saclay, Institut d'Alembert, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
Biofilm formation is one of main causes of bacterial antimicrobial resistance infections. It is known that the soluble lectins LecA and LecB, produced by , play a key role in biofilm formation and lung infection. Bacterial lectins are therefore attractive targets for the development of new antibiotic-sparing anti-infective drugs.
View Article and Find Full Text PDFChem Commun (Camb)
July 2023
School of Biological and Chemical Sciences, University of Galway, University Road, Galway, Ireland.
Interactions of lectins with glycoconjugate-terbium(III) self-assembly complexes lead to sensing through enhanced lanthanide luminescence. This glycan-directed sensing paradigm detects an unlabelled lectin (LecA) associated with pathogen P. aeruginosa in solution, without any bactericidal activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!