Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a new material design concept for synthetic, thermally responsive poly(N-isopropylacrylamide)-based copolymer nanoparticle (NP) hydrogels, which protect proteins from thermal stress. The NP hydrogels bind and protect a target enzyme from irreversible activity loss upon exposure to heat but "autonomously" release the enzyme upon subsequent cooling of the solution. Incorporation of the optimized amount of negatively charged and hydrophobic comonomers to the NP hydrogels was key to achieve these desired functions. As the NP hydrogels do not show a strong affinity for the enzyme at room temperature, they can remain in solution without adversely affecting enzymatic activity or they can be removed by filtration to leave the enzyme in solution. The results demonstrate the promise of this approach for improving the thermal tolerance of proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201404881 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!