Characterization of Phytophthora nicotianae isolates in southeast Spain and their detection and quantification through a real-time TaqMan PCR.

J Sci Food Agric

Department of Soil and Water Conservation and Organic Wastes Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), 30100, Espinardo, Murcia, Spain.

Published: April 2015

Background: The soil-borne pathogens Phytophthora nicotianae and P. capsici are the causal agents of root and stem rot of many plant species. Although P. capsici was considered the causal agent in one of the main pepper production areas of Spain to date, evidence of the presence of P. nicotianae was found. We aimed to survey the presence of P. nicotianae and study the variability in its populations in this area in order to improve the management of Tristeza disease.

Results: A new specific primer and a TaqMan probe were designed based on the internal transcribed spacer regions of ribosomal DNA to detect and quantify P. nicotianae. Both morphological and molecular analysis showed its presence and confirmed it to be the causal agent of the Phytophthora disease symptoms in the studied area. The genetic characterization among P. nicotianae populations showed a low variability of genetic diversity among the isolates. Only isolates of the A2 mating type were detected.

Conclusions: Not only is a specific and early detection of P. nicotianae essential but also the study of genetic variability among isolates for the appropriate management of the disease, above all, in producing areas with favorable conditions for the advance of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.6813DOI Listing

Publication Analysis

Top Keywords

phytophthora nicotianae
8
causal agent
8
presence nicotianae
8
nicotianae
7
characterization phytophthora
4
isolates
4
nicotianae isolates
4
isolates southeast
4
southeast spain
4
spain detection
4

Similar Publications

Identification and Functional Analysis of the Gene Conferring Resistance to Late Blight () in Tomato.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene confers resistance against the race T of in tomatoes.

View Article and Find Full Text PDF

Endocytosis is an essential cellular process that uptakes substances into cells at the plasma membrane from the extracellular space and plays a major role in plant development and responses to environmental stimuli. Research has shown that plant membrane-resident proteins are endocytosed and transported into plant endosomes in response to pathogen-secreted elicitors. However, there is no conclusive experimental evidence demonstrating how secreted cytoplasmic effectors from oomycetes and fungi enter host cells during infection.

View Article and Find Full Text PDF

LAZARUS 1 functions as a positive regulator of plant immunity and systemic acquired resistance.

Front Plant Sci

November 2024

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Systemic acquired resistance (SAR) is activated by local infection and confers enhanced resistance against subsequent pathogen invasion. Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two key signaling molecules in SAR and their levels accumulate during SAR activation. Two members of plant-specific Calmodulin-Binding Protein 60 (CBP60) transcription factor family, CBP60g and SARD1, regulate the expression of biosynthetic genes of SA and NHP.

View Article and Find Full Text PDF
Article Synopsis
  • - NPH3/RPT2-Like (NRL) proteins are important blue light receptors that influence how plants respond to light, but their role in plant immunity, particularly against late blight from *Phytophthora infestans*, is not well understood.
  • - In this study, researchers identified 35 StNRL genes in potatoes, classifying them into six subfamilies, with many showing evidence of segmental duplication, which is key for their evolutionary expansion.
  • - Specific StNRL genes, like StNRL-6 and StNRL-7, were found to interact with the photoreceptor Stphot1 and negatively affect the resistance of both potatoes and *Nicotiana benthamiana*
View Article and Find Full Text PDF

Whole Genome Sequencing and Biocontrol Potential of ASG80 Against Diseases.

Microorganisms

November 2024

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.

-induced crop diseases, commonly known as "plant plagues", pose a significant threat to global food security. In this study, strain ASG80 was isolated from sisal roots and demonstrated a broad-spectrum antagonistic activity against several species and fungal pathogens. Strain ASG80 was identified as via phylogenetic analysis, digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!