There is no licensed treatment for non-alcoholic fatty liver disease (NAFLD), a condition that increases risk of chronic liver disease, type 2 diabetes and cardiovascular disease. We tested whether 15-18 months treatment with docosahexaenoic acid (DHA) plus eicosapentaenoic acid (EPA) (Omacor/Lovaza) (4 g/day) decreased liver fat and improved two histologically-validated liver fibrosis biomarker scores (primary outcomes). Patients with NAFLD were randomised in a double blind placebo-controlled trial [DHA+EPA(n=51), placebo(n=52)]. We quantified liver fat percentage (%) by magnetic resonance spectroscopy in three liver zones. We measured liver fibrosis using two validated scores. We tested adherence to the intervention (Omacor group) and contamination (with DHA and EPA) (placebo group) by measuring erythrocyte percentage DHA and EPA enrichment (gas chromatography). We undertook multivariable linear regression to test effects of: a) DHA+EPA treatment (ITT analyses) and b) erythrocyte DHA and EPA enrichment (secondary analysis). Median (IQR) baseline and end of study liver fat% were 21.7 (19.3) and 19.7 (18.0) (placebo), and 23.0 (36.2) and 16.3 (22.0), (DHA+EPA). In the fully adjusted regression model there was a trend towards improvement in liver fat% with DHA+EPA treatment (β=-3.64 (95%CI -8.0,0.8); p=0.1) but there was evidence of contamination in the placebo group and variable adherence to the intervention in the Omacor group. Further regression analysis showed that DHA enrichment was independently associated with a decrease in liver fat% (for each 1% enrichment, β=-1.70 (95%CI -2.9,-0.5); p=0.007). No improvement in the fibrosis scores occurred. Conclusion. Erythrocyte DHA enrichment with DHA+EPA treatment is linearly associated with decreased liver fat%. Substantial decreases in liver fat% can be achieved with high percentage erythrocyte DHA enrichment in NAFLD. (Hepatology 2014;).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.27289 | DOI Listing |
Antioxid Redox Signal
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.
View Article and Find Full Text PDFLab Anim Res
January 2025
Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, The 1st Veterinary R&D Building Rm 301, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea.
Background: Metabolic syndrome (MetS) refers to a group of risk factors that cause health problems, such as obesity, diabetes, dyslipidemia, and hyperglycemia. MetS is characterized by insulin resistance, which leads to abnormal insulin sensitivity. Cirsium japonicum var.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Background: Homozygous familial hypercholesterolaemia (HoFH) increases risk of premature cardiovascular events and cardiac death. In severe cases of HoFH, clinical signs and symptoms cannot be controlled well by non-surgical treatments, liver transplantation (LT) currently represents the viable option.
Method: To assess the clinical efficacy, prognosis, and optimal timing of LT for HoFH, a retrospective analysis was conducted on the preoperative, surgical conditions, and postoperative follow-up of children who received an LT for HoFH at the Beijing Friendship Hospital over the period from December 2014 to August 2022.
Radiol Med
January 2025
Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Mevlana Bulvarı No:29, 06560, Yenimahalle, Ankara, Turkey.
J Lipid Res
January 2025
Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:
Background: The liver plays a central role in fat storage, but little is known about physiological fat accumulation during early development. Here we investigated a transient surge in hepatic lipid droplets observed in newborn mice immediately after birth.
Methods: We developed a novel model to quantify liver fat content without tissue processing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!