Introduction: We studied the time course of neuromuscular fatigue during maximal intensity intermittent-sprint cycling.
Methods: Eight participants completed 10, 10-s sprints interspersed with 180 s of recovery. The power outputs were recorded for each sprint. Knee extensor maximum voluntary contraction (MVC) force, voluntary activation, and evoked contractile properties were recorded presprint, postsprint 5, and postsprint 10.
Results: Total work over the 10 sprints decreased significantly (P < 0.05) and could be described by 2 linear relationships from sprints 1-5 compared with sprints 6-10. Participants had significantly (P < 0.05) lower MVC and twitch forces postsprint 5 compared with presprint. MVC, voluntary activation, and twitch force were decreased (P < 0.05) postsprint 10 compared with postsprint 5.
Conclusions: The maximal intermittent sprints induced neuromuscular fatigue. Neuromuscular fatigue in the first 5 sprints was mainly peripheral, whereas in the last 5 sprints it was both peripheral and central.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.24342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!