Human pluripotent stem cells (hPSCs) can undergo unlimited self-renewal and have the capacity to differentiate into all somatic cell types, and are therefore an ideal source for the generation of cells and tissues for research and therapy. To realize this potential, defined cell culture systems that allow expansion of hPSCs and subsequent controlled differentiation, ideally in an implantable three-dimensional (3D) matrix, are required. Here we mimic spider silk - Nature's high performance material - for the design of chemically defined 2D and 3D matrices for cell culture. The silk matrices do not only allow xeno-free long-term expansion of hPSCs but also differentiation in both 2D and 3D. These results show that biomimetic spider silk matrices enable hPSC culture in a manner that can be applied for experimental and clinical purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2014.06.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!