An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2014.06.071 | DOI Listing |
J Environ Manage
January 2025
Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address:
Sewerage blockages due to oil and grease deposition discharged from food premises remain a persistent issue globally. This study evaluates the degree of compliance of food premises in Seri Kembangan, Selangor, Malaysia with grease trap guideline, and investigates the factors affecting restaurants' compliance performance. Data were collected from 36 restaurants through a questionnaire-based interview consisting of questions about grease trap installation, operation, maintenance and waste disposal, followed by a walkthrough of the kitchen.
View Article and Find Full Text PDFBraz J Microbiol
December 2024
Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
Environ Int
November 2024
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China. Electronic address:
Bioaerosols are ubiquitous and have a substantial impact on the atmosphere and human health. Despite the identification of numerous bioaerosol emission sources, the contribution of anthropogenic sources remains inadequately understood. In kitchens, oil stains accumulated at the vent may discharge microorganisms into the environment with airflow, potentially discharging bioaerosol pollution.
View Article and Find Full Text PDFSci Total Environ
November 2024
Unit of Environmental Engineering, Institute of Infrastructure, University of Innsbruck, 6020 Innsbruck, Austria.
Management of fat, oil and grease (FOG) is crucial for the recovery of renewable resources and the protection of sewer systems. This study aims to identify the potential quantities and qualities of FOG that can be acquired through optimised grease separator (GS) management approaches in hotels and restaurants during seasonal tourism. A technical survey of 20 GS from hotels and restaurants in the federal state of Tyrol, Austria was conducted.
View Article and Find Full Text PDFRSC Sustain
August 2023
Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!