AI Article Synopsis

  • Rheumatoid arthritis is a disease that causes painful swelling in the joints and affects about 1-2% of people worldwide.
  • Scientists used special mice that lack a gene called A20, which helps them study how certain immune system parts, like something called the Nlrp3 inflammasome, cause problems in rheumatoid arthritis.
  • The research showed that the Nlrp3 inflammasome and a protein called interleukin-1 are very important in making rheumatoid arthritis worse, and removing them helped protect the mice from joint damage.

Article Abstract

Rheumatoid arthritis is a chronic autoinflammatory disease that affects 1-2% of the world's population and is characterized by widespread joint inflammation. Interleukin-1 is an important mediator of cartilage destruction in rheumatic diseases, but our understanding of the upstream mechanisms leading to production of interleukin-1β in rheumatoid arthritis is limited by the absence of suitable mouse models of the disease in which inflammasomes contribute to pathology. Myeloid-cell-specific deletion of the rheumatoid arthritis susceptibility gene A20/Tnfaip3 in mice (A20(myel-KO) mice) triggers a spontaneous erosive polyarthritis that resembles rheumatoid arthritis in patients. Rheumatoid arthritis in A20(myel-KO) mice is not rescued by deletion of tumour necrosis factor receptor 1 (ref. 2). Here we show, however, that it crucially relies on the Nlrp3 inflammasome and interleukin-1 receptor signalling. Macrophages lacking A20 have increased basal and lipopolysaccharide-induced expression levels of the inflammasome adaptor Nlrp3 and proIL-1β. As a result, A20-deficiency in macrophages significantly enhances Nlrp3 inflammasome-mediated caspase-1 activation, pyroptosis and interleukin-1β secretion by soluble and crystalline Nlrp3 stimuli. In contrast, activation of the Nlrc4 and AIM2 inflammasomes is not altered. Importantly, increased Nlrp3 inflammasome activation contributes to the pathology of rheumatoid arthritis in vivo, because deletion of Nlrp3, caspase-1 and the interleukin-1 receptor markedly protects against rheumatoid-arthritis-associated inflammation and cartilage destruction in A20(myel-KO) mice. These results reveal A20 as a novel negative regulator of Nlrp3 inflammasome activation, and describe A20(myel-KO) mice as the first experimental model to study the role of inflammasomes in the pathology of rheumatoid arthritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126806PMC
http://dx.doi.org/10.1038/nature13322DOI Listing

Publication Analysis

Top Keywords

rheumatoid arthritis
28
nlrp3 inflammasome
16
a20myel-ko mice
16
nlrp3
8
arthritis
8
cartilage destruction
8
interleukin-1 receptor
8
inflammasome activation
8
pathology rheumatoid
8
rheumatoid
7

Similar Publications

Roads to remission: evolving treatment concepts in type 2 inflammatory diseases.

EClinicalMedicine

February 2025

Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany.

Unlabelled: Non-communicable diseases (NCDs) characterised by type 2 inflammation, including asthma, allergic rhinitis, chronic rhinosinusitis with nasal polyps, atopic dermatitis, food allergies and eosinophilic esophagitis, are increasing in prevalence worldwide. Currently, there is a major paradigm shift in the management of these diseases, towards the concept of disease modification and the treatment goal remission, regardless of severity and age. Remission as a treatment goal in chronic inflammatory NCDs was first introduced in rheumatoid arthritis, and then adopted in other non-type 2 inflammatory diseases.

View Article and Find Full Text PDF

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Active Ingredients and Potential Mechanism of Additive Sishen Decoction in Treating Rheumatoid Arthritis with Network Pharmacology and Molecular Dynamics Simulation and Experimental Verification.

Drug Des Devel Ther

January 2025

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People's Republic of China.

Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear.

Methods: To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks.

View Article and Find Full Text PDF

The family of heterodimeric CD11/CD18 integrins facilitate leukocyte adhesion and migration in a wide range of normal physiologic responses, as well as in the pathology of inflammatory diseases. Soluble CD18 (sCD18) is found mainly in complexes with hydrodynamic radii of 5 and 7.2 nm, suggesting a compositional difference.

View Article and Find Full Text PDF

Iron is a crucial element for living organism in terms of oxygen transport, hematopoiesis, enzymatic activity, mitochondrial respiratory chain function and also immune system function. The human being has evolved a mechanism to regulate body iron. In some rheumatic diseases such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE), systemic sclerosis (SSc), ankylosing spondylitis (AS), and gout, this balanced iron regulation is impaired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!