A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Renal cells exposed to cadmium in vitro and in vivo: normalizing gene expression data. | LitMetric

Renal cells exposed to cadmium in vitro and in vivo: normalizing gene expression data.

J Appl Toxicol

Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.

Published: May 2015

Cadmium (Cd) is a toxic metal with a long half-life in biological systems. This half-life is partly as a result of metallothioneins (MTs), metal-binding proteins with a high affinity for Cd. The high retention properties of the kidneys reside in proximal tubular cells that possess transport mechanisms for Cd-MT uptake, ultimately leading to more Cd accumulation. Researchers have studied MT-metal interactions using various techniques including quantitative real-time PCR (qPCR), an efficient tool for quantifying gene expression. Often a poor choice of reference genes, which is represented by their instability and condition dependency, leads to inefficient normalization of gene expression data and misinterpretations. This study demonstrates the importance of an efficient normalization strategy in toxicological research. A selection of stable reference genes was proposed in order to acquire reliable and reproducible gene quantification under metal stress using MT expression as an example. Moreover, in vitro and in vivo setups were compared to identify the influence of toxicological compounds in function of the experimental design. This study shows that glyceraldehyde-3-phosphate dehydrogenase (Gapdh), tyrosine monooxygenase/tryptophan5-monooxygenase activation-protein, zeta polypeptide (Ywhaz) and beta-actin (Actb) are the most stable reference genes in a kidney proximal tubular cell line exposed to moderate and high Cd concentrations, applied as CdCl2 . A slightly different sequence in reference gene stability was found in renal cells isolated from rats in vivo exposed to Cd. It was further shown that three reference genes are required for efficient normalization in this experimental setup. This study demonstrates the importance of an efficient normalization strategy in toxicological research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.3047DOI Listing

Publication Analysis

Top Keywords

reference genes
16
gene expression
12
efficient normalization
12
renal cells
8
vitro vivo
8
expression data
8
proximal tubular
8
study demonstrates
8
demonstrates efficient
8
normalization strategy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!