Atomic layer deposition is successfully applied to synthesize lithium iron phosphate in a layer-by-layer manner by using self-limiting surface reactions. The lithium iron phosphate exhibits high power density, excellent rate capability, and ultra-long lifetime, showing great potential for vehicular lithium batteries and 3D all-solid-state microbatteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201401805DOI Listing

Publication Analysis

Top Keywords

lithium iron
8
iron phosphate
8
rational design
4
design atomic-layer-deposited
4
atomic-layer-deposited lifepo4
4
lifepo4 high-performance
4
high-performance cathode
4
cathode lithium-ion
4
lithium-ion batteries
4
batteries atomic
4

Similar Publications

Enhancing Li Deposition Behavior through Valence Gradient-Assisted Iron Layer.

Nano Lett

January 2025

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.

Uncontrolled lithium (Li) dendrite formation presents major safety risks and challenges in the Li host design. A novel approach is introduced, using a valence gradient in iron nanoparticles (Fe, Fe, Fe) to stabilize the anodes. An Fe component, with fast Li diffusion, ensures a steady supply of Li to Fe and Fe components, which have slower Li diffusion.

View Article and Find Full Text PDF

The redox aspects of lithium-ion batteries.

Energy Environ Sci

December 2024

Institute of Chemical Science and Engineering, Station 6, Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne Switzerland

This article aims to present the redox aspects of lithium-ion batteries both from a thermodynamic and from a conductivity viewpoint. We first recall the basic definitions of the electrochemical potential of the electron, and of the Fermi level for a redox couple in solutions. The Fermi level of redox solids such as metal oxide particles is then discussed, and a Nernst equation is derived for two ideal systems, namely an ideally homogenous phase where the oxidised and reduced metal ions are homogeneously distributed and two segregated phases where the oxidised and the reduced metal ions are separated in two distinct phases such as observed, for example, in biphasic lithium iron phosphate.

View Article and Find Full Text PDF

We investigate magnesium-iron pyroborate MgFeBO as a potential cathode material for rechargeable magnesium-ion batteries. Synchrotron powder X-ray diffraction and Mössbauer spectroscopy confirm its successful synthesis and iron stabilization in the high-spin Fe(II) state. Initial electrochemical testing against a lithium metal anode yields a first charge capacity near the theoretical value (147.

View Article and Find Full Text PDF

Doping LiFePO with Al: Suppression of Anti-Site Defects and Implications for Battery Recycling.

ACS Omega

January 2025

Department of Mechanical Engineering, Virginia Tech, Blacksburg, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States.

In this study, a group of aluminum-doped lithium iron phosphate (LFP) with varying dopant concentrations (Li Al FePO/C, where = 0.01-0.03) was synthesized via a solid-state reaction.

View Article and Find Full Text PDF

Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China.

Sci Rep

January 2025

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong Province, People's Republic of China.

The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!