Background: Galectin-1 (Gal1), a carbohydrate-binding protein is implicated in cancer cell proliferation, invasion and tumour angiogenesis. Several Gal1-targeting compounds have recently emerged. OTX008 is a calixarene derivative designed to bind the Gal1 amphipathic β-sheet conformation. Our study contributes to the current understanding of the role of Gal1 in cancer progression, providing mechanistic insights into the anti-tumoural activity of a novel small molecule Gal1-inhibitor.

Methods: We evaluated in vitro OTX008 effects in a panel of human cancer cell lines. For in vivo studies, an ovarian xenograft model was employed to analyse the antitumour activity. Finally, combination studies were performed to analyse potential synergistic effects of OTX008.

Results: In cultured cancer cells, OTX008 inhibited proliferation and invasion at micromolar concentrations. Antiproliferative effects correlated with Gal1 expression across a large panel of cell lines. Furthermore, cell lines expressing epithelial differentiation markers were more sensitive than mesenchymal cells to OTX008. In SQ20B and A2780-1A9 cells, OTX008 inhibited Gal1 expression and ERK1/2 and AKT-dependent survival pathways, and induced G2/M cell cycle arrest through CDK1. OTX008 enhanced the antiproliferative effects of Semaphorin-3A (Sema3A) in SQ20B cells and reversed invasion induced by exogenous Gal1. In vivo, OTX008 inhibited growth of A2780-1A9 xenografts. OTX008 treatment was associated with downregulation of Gal1 and Ki67 in treated tumours, as well as decreased microvessel density and VEGFR2 expression. Finally, combination studies showed OTX008 synergy with several cytotoxic and targeted therapies, principally when OTX008 was administered first.

Conclusion: This study provides insights into the role of Gal1 in cancer progression as well as OTX008 mechanism of action, and supports its further development as an anticancer agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2014.06.015DOI Listing

Publication Analysis

Top Keywords

otx008
12
cancer cell
12
proliferation invasion
12
cell lines
12
cells otx008
12
otx008 inhibited
12
cell proliferation
8
invasion tumour
8
tumour angiogenesis
8
gal1
8

Similar Publications

Targeting Galectin-1 Overcomes Paclitaxel Resistance in Esophageal Squamous Cell Carcinoma.

Cancer Res

November 2024

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.

Resistance to paclitaxel poses a major obstacle in esophageal squamous cell carcinoma (ESCC) treatment. A better understanding of the mechanisms underlying paclitaxel resistance could help identify prognostic biomarkers and improved therapeutic strategies. In this study, we established a patient-derived xenograft model of acquired paclitaxel resistance and used RNA sequencing to identify galectin-1, encoded by LGALS1, as a key mediator of resistance.

View Article and Find Full Text PDF

Gal-1-mediated cytochrome p450 activation promotes fibroblast into myofibroblast differentiation in pulmonary fibrosis.

Int Immunopharmacol

November 2024

Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325000, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China; Department of General Practice, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318001, China. Electronic address:

Pulmonary fibrosis (PF) results from excessive extracellular matrix (ECM) deposition and tissue remodeling after activation of fibroblasts into myofibroblasts. Abnormally deposited fibrotic ECM, in turn, promotes fibroblast activation and accelerates loss of lung structure and function. However, the molecular mediators and exact mechanisms by which fibrotic ECM promotes fibroblast activation are unclear.

View Article and Find Full Text PDF

This study investigated the efficacy of a new chrysin-loaded calixarene-cyclodextrin ternary drug delivery system (DDS) in reversing liver fibrosis in a mouse model of chronic diabetes. The system was designed to enhance the solubility and bioavailability of chrysin (CHR) and calixarene 0118 (OTX008). Adult male CD1 mice received streptozotocin (STZ) injections to induce diabetes.

View Article and Find Full Text PDF

Calixarene 0118 (OTX008) and chrysin (CHR) are promising molecules for the treatment of fibrosis and diabetes complications but require an effective delivery system to overcome their low solubility and bioavailability. Sulfobutylated β-cyclodextrin (SBECD) was evaluated for its ability to increase the solubility of CHR by forming a ternary complex with OTX008. The resulting increase in solubility and the mechanisms of complex formation were identified through phase-solubility studies, while dynamic light-scattering assessed the molecular associations within the CHR-OTX008-SBECD system.

View Article and Find Full Text PDF

Cardiac fibrosis is strongly induced by diabetic conditions. Both chrysin (CHR) and calixarene OTX008, a specific inhibitor of galectin 1 (Gal-1), seem able to reduce transforming growth factor beta (TGF-β)/SMAD pro-fibrotic pathways, but their use is limited to their low solubility. Therefore, we formulated a dual-action supramolecular system, combining CHR with sulfobutylated β-cyclodextrin (SBECD) and OTX008 (SBECD + OTX + CHR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!