A novel automatic 3D+time left ventricle (LV) segmentation framework is proposed for cardiac magnetic resonance (CMR) datasets. The proposed framework consists of three conceptual blocks to delineate both endo and epicardial contours throughout the cardiac cycle: (1) an automatic 2D mid-ventricular initialization and segmentation; (2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and (3) a tracking procedure. Hereto, we propose to adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR images by integrating dedicated energy terms. Moreover, we extend the coupled BEAS formalism towards its application in 3D MR data by adapting it to a cylindrical space suited to deal with the topology of the image data. Furthermore, a fast stack initialization method is presented for efficient initialization and to enforce consistent cylindrical topology. Finally, we make use of an anatomically constrained optical flow method for temporal tracking of the LV surface. The proposed framework has been validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2014.06.001DOI Listing

Publication Analysis

Top Keywords

cmr datasets
12
proposed framework
8
initialization segmentation
8
stack initialization
8
segmentation
5
fast automatic
4
automatic myocardial
4
myocardial segmentation
4
segmentation cine
4
cmr
4

Similar Publications

Giant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.

View Article and Find Full Text PDF

CMR-BENet: A confidence map refinement boundary enhancement network for left ventricular myocardium segmentation.

Comput Methods Programs Biomed

December 2024

Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China.

Background And Objective: Left ventricular myocardium segmentation is of great significance for clinical diagnosis, treatment, and prognosis. However, myocardium segmentation is challenging as the medical image quality is disturbed by various factors such as motion, artifacts, and noise. Its accuracy largely depends on the accurate identification of edges and structures.

View Article and Find Full Text PDF

A robust semi-supervised regressor with correntropy-induced manifold regularization and adaptive graph.

Neural Netw

February 2025

School of Computer Science and Technology, Soochow University, 215006 Suzhou, China. Electronic address:

For semi-supervised regression tasks, most existing methods ignore the impact of noise. However, the data inevitably contain noise. Therefore, this study proposes a novel correntropy-induced semi-supervised regression (CSSR) method that mitigates the adverse effects of noise.

View Article and Find Full Text PDF

A novel deep learning based method for myocardial strain quantification.

Biomed Phys Eng Express

November 2024

Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America.

This paper introduces a deep learning method for myocardial strain analysis while also evaluating the efficacy of the method across a public and a private dataset for cardiac pathology discrimination.We measure the global and regional myocardial strain in cSAX CMR images by first identifying a ROI centered in the LV, obtaining the cardiac structures (LV, RV and Myo) and estimating the motion of the myocardium. Finally, we compute the strain for the heart coordinate system and report the global and regional strain.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are merging unstructured patient data with structured health records to create the MSK-CHORD dataset, consisting of varied cancer types from nearly 25,000 patients at Memorial Sloan Kettering Cancer Center.
  • This dataset allows for in-depth analysis of cancer outcomes using advanced techniques like natural language processing, revealing new relationships that smaller datasets may not show.
  • Using MSK-CHORD for machine learning models, findings suggest that incorporating features from these unstructured texts can better predict patient survival than relying solely on genomic data or cancer staging.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!